Skip to main content

Earth tide observations and interpretation

  • Earth Tides
  • Chapter
  • First Online:
Tidal Phenomena

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 66))

Abstract

Earth tide observations with gravimeters, tilt- and strainmeters were obtained at many stations on the globe. The original aim of the research was to determine the global response of the earth to the tidal forcing in the form of Love and Shida numbers. This goal could not be reached due to strong perturbations of the body tide signals by ocean tide loading and attraction and by local elastic effects for the two latter types of instruments. Higher accuracy is needed for the instruments and the corrections for these perturbations, before the true body tide signal can be gleaned from the observations and information about the elastic and anelastic threedimensional structure of the earth can be retrieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achilli, V., Baldi, P., Casula, G., Errani, M., Focardi, S., Guerzoni, M., Palmonari, F., Raguni, G. 1995. A calibration system for superconducting gravimeters. Bull. Geod. 69: 73–80.

    Google Scholar 

  • Agnew, D. C. 1981. Nonlinearity in Rock: Evidence from Earth Tides. J. geophys. Res. 86: 3969–3978.

    Google Scholar 

  • Angew, D. C. 1986. Strainmeters and Tiltmeters. Rev. Geophysics 24: 579–624.

    Google Scholar 

  • Agnew, D. C. 1995. Ocean Load Tides at the South Pole: A Validation of Recent Ocean-Tide Models. Geophys. Res. Lett. 22: 3063–3066.

    Google Scholar 

  • Asch, G., Jahr, T., Jentzsch, G., Kiviniemi, A., Kääriäinen, J. 1987. Measurement of gravity tides along the ‘Blue Road Geotraverse’ in Fennoscandia. Publ. Finnish Geodetic Inst. 107: 1–57.

    Google Scholar 

  • Baker, T. F. 1980a. Tidal gravity in Britain: tidal loading and the spatial distribution of the marine tide. Geophys. J. R. astr. Soc. 62: 249–267.

    Google Scholar 

  • Baker, T. F. 1980b. Tidal tilt at Llanrwst, North Wales: tidal loading and Earth structure. Geophys. J. R. astr. Soc. 62: 269–290.

    Google Scholar 

  • Baker, T. F. 1984. Tidal deformations of the Earth. Sci. Prog., Oxf. 69: 197–233.

    Google Scholar 

  • Baker, T. F., Curtis, D. J., Dodson, A. H. 1996. A new test of Earth tide models in central Europe. Geophys. Res. Lett. 23: 3559–3562.

    Google Scholar 

  • Baker, T. F., Edge, R. J., Jeffries, G. 1989. European tidal gravity: an improvement between observations and models. Geophys. Res. Lett. 16: 1109–1112.

    Google Scholar 

  • Baker, T. F., Lennon, G. W. 1973. Tidal Tilt Anomalies. Nature 243: 75–76.

    Google Scholar 

  • Beaumont, C., Berger, J. 1974. Earthquake Prediction: Modification of Earth Tide Tilts and Strains by Dilatancy. Geophys. J. R. astr. Soc. 39: 111–118.

    Google Scholar 

  • Beavan, J. R., Bilham, R., Emter, D., King, G. C. P. 1979. Observations of Strain Enhancements Across a Fissure. Deutsche Geod. Komm. B 231: 47–58.

    Google Scholar 

  • Berger, J. 1975. A Note on Thermoelastic Strains and Tilts. J. geophys. Res. 80: 274–277.

    Google Scholar 

  • Berger, J., Beaumont, C. 1975. An Analysis of Tidal Strain Observations from the USA. II. The Inhomogeneous Tide. Bull. seismol. Soc. Am. 66: 1821–1846.

    Google Scholar 

  • Bonatz, M., Melchior, P., Ducarme, B. 1971. Station: Longyearbyen (Spitsbergen) — Mésures faites dans les trois composantes avec six pendules horizontaux VM et trois gravimètres Askania. Bull. Obs. R. Belg. 4: 1–110.

    Google Scholar 

  • Bonatz, M., Schüller, K. 1976. Gravimetrische Erdgezeiten-Station Kerguelen — Parameter der Partialtiden für den Beobachtungszeitraum 1973/74. Deutsche Geod. Komm. B 218: 1–26.

    Google Scholar 

  • Cabaniss, G. H. 1978. The measurement of long period and secular deformation with deep borehole tiltmeters. In: Applications of Geodesy to Geodynamics. pp. 165–169. I. Mueller (ed.). Ohio State University Press, Columbus, Ohio, USA.

    Google Scholar 

  • Dehant, V. 1991. Review of the Earth Tidal Models and Contribution of Earth Tides in Geodynamics. J. geophys. Res. 96: 20235–20240.

    Google Scholar 

  • Dehant, V. 1987. Integration of the Gravitational Motion Equations for an Elliptical Uniformly Rotating Earth with an Inelastic Mantle. Phys. Earth planet. Inter. 49: 242–258.

    Google Scholar 

  • Dehant, V. 1995. Theoretical tidal parameters: state of the art. Bull. Inf. Marées Terrestres. 121: 9027–9029.

    Google Scholar 

  • Dehant, V., Ducarme, B. 1987. Comparison between the Theoretical and Observed Tidal Gravimetric Factors. Phys. Earth planet. Inter. 49: 192–212.

    Google Scholar 

  • Dehant, V., Zschau, J. 1989. The Effect of Mantle Inelasticity on Tidal Gravity: a Comparison between the Spherical and the Elliptical Earth Model. Geophys. J. Int. 97: 549–556.

    Google Scholar 

  • Dittfeld, H.-J., Wenzel, H.-G. 1993. Joint Gravity Tide Recording at Potsdam. In: Proc. IAG-Symp. 113: Geodesy Phys. Earth. pp. 186–189. Springer, Berlin.

    Google Scholar 

  • Dziewonski, A. M., Anderson, D. L. 1981. Preliminary reference Earth model. Phys. Earth planet. Inter. 25: 297–357.

    Google Scholar 

  • Edge, R. J., Baker, T. F., Jeffries, G. 1981. Borehole Tilt Measurements: Aperiodic Crustal Tilt in an Aseismic Area. Tectonophysics 71: 97–109.

    Google Scholar 

  • Emter, D., Zürn, W., Mälzer, H. 1989. Underground Measurements at Tidal Sensitivity with a Long Baseline Differential Fluid Pressure. Deutsche Geod. Komm. B 288: 1–74.

    Google Scholar 

  • Francis, O., Melchior, P. 1996. Tidal Loading in Western Europe: a Test Area. Geophys. Res. Lett. 23: 2251–2254.

    Google Scholar 

  • Friederich, W., Wilhelm, H. 1986. Solar Radiational Effects on Earth Tide Measurements. In: Proc. 10th Int. Symp. Earth Tides. pp. 865–880. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.

    Google Scholar 

  • Gerstenecker, C., Zschau, J., Bonatz, M., 1986. Finite Element Modelling of the Hunsrück Tilt Anomalies — A Model Comparison. In: Proc. 10th Int. Symp. Earth Tides. pp. 797–804. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.

    Google Scholar 

  • Goodkind, J. M. 1991. The Superconducting Gravimeters: Principle of Operation, Current Performance and Future Prospects. Cah. Centre Europ. Geodyn. Seism. 3: 81–90.

    Google Scholar 

  • Goodkind, J. M., Czipott, P., Mills, A., Murakami, M., Platzman, P., Young, C., Zuckerman, D. 1993. Test of the gravitational inverse-square law at 0.4 m to 1.4 m mass separation. Phys. Rev. D. 47: 1290–1297

    Google Scholar 

  • Harrison, J. C. 1976. Cavity and Topographic Effects in Tilt and Strain Measurements. J. geophys. Res. 81: 319–328.

    Google Scholar 

  • Harrison, J. C. (ed.) 1985. Earth Tides. In: Benchmark Papers in Geology Series. pp. 1–419. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hart, R. H. G., Gladwin, M. T., Gwyther, R. L., Agnew, D. C., Wyatt, F. K. 1996. Tidal calibration of borehole strainmeters: Removing the effects of small-scale inhomogeneity. J. geophys. Res. 101: 25553–25571.

    Google Scholar 

  • Jahr, T., Jentzsch, G., Andersen, N., Remmer, O. 1991. Ocean tidal loading on the shelf areas around Denmark. In: Proc. 11th Int. Symp. Earth Tides., pp. 309–319. J. Kakkuri (ed.). Schweizerbart, Stuttgart.

    Google Scholar 

  • Jentzsch, G., Ramatschi, M., Madsen, F. 1995. Tidal gravity measurements on Greenland. Bull. Inf. Marées Terrestres. 122: 9239–9248.

    Google Scholar 

  • Johnson, H. O., Wyatt, F., Agnew, D.C., Zürn, W. 1994. Tidal Tilts at Pinyon Flat, California Measured at Depths of 24 and 120 Meters. In: Proc. 12th Int. Symp. Earth Tides. pp. 129–136. H.-T. Hsu (ed.). Science Press, Beijing.

    Google Scholar 

  • King, G. C. P., Bilham, R. 1973. Tidal Tilt Measurements in Europe. Nature 243: 74–75.

    Google Scholar 

  • King, G. C. P., Bilham, R. 1976. A Geophysical Wire Strainmeter. Bull. seism. Soc. Am. 66: 2039–2047.

    Google Scholar 

  • King, G. C. P., Zürn, W., Evans, R., Emter, D. 1976. Site Correction for Long Period Seismometers, Tiltmeters and Strainmeters. Geophys. J. R. astr. Soc. 44: 405–411.

    Google Scholar 

  • Knopoff, L., Rydelek, P. A., Zürn, W., Agnew, D. C. 1989. Observations of Load Tides at the South Pole. Phys. Earth Planet. Inter. 54: 33–37.

    Google Scholar 

  • Kohl, M., Levine, J. 1992. Using a Short Baseline Borehole Tiltmeter to Measure the Regional Tilt. EOS (Trans. Am. geophys. Un.) 73: Suppl. 121.

    Google Scholar 

  • Kohl, M., Levine, J. 1995. Measurement and Interpretation of Tidal Tilts in Southern California. J. geophys. Res. 100: 3929–3942.

    Google Scholar 

  • Latynina, L. A., Rizaeva, S. D. 1976. On Tidal-Strain Variations Before Earthquakes. Tectonophysics 31: 121–127.

    Google Scholar 

  • Llubes, M., Mazzega, P. 1996. The ocean tide gravimetric loading reconsidered. Geophys. Res. Lett. 23: 1481–1484.

    Google Scholar 

  • Melchior, P. 1981. The tides of the planet earth. pp. 1–609. Pergamon Press, Oxford.

    Google Scholar 

  • Melchior, P. 1994. A New Data Bank for Tidal Gravity Measurements (DB 92). Phys. Earth planet. Inter. 82: 125–155.

    Google Scholar 

  • Melchior, P. 1995a. A continuing discussion about the correlation of tidal gravity anomalies and heat flow densities. Phys. Earth planet. Inter. 88: 223–256.

    Google Scholar 

  • Melchior, P. 1995b. The Trends of Earth Tides Research. In: Proc. 12th Int. Symp. Earth Tides. pp. 29–37. H.-T. Hsu (ed.). Science Press, Beijing.

    Google Scholar 

  • Meertens, C., Levine, J., Busby, R. 1989. Tilt Observations Using Borehole Tiltmeters: 2. Analysis of Data From Yellowstone National Park. J. geophys. Res. 94: 587–601.

    Google Scholar 

  • Molodenskii, S. M., Kramer, M. V. 1980. The Influence of Large-scale Horizontal Inhomogeneities in the Mantle on Earth Tides. Bull. Acad. Sci. U.S.S.R., Earth Phys. 16: 1–11.

    Google Scholar 

  • Müller, G. 1977. Thermoelastic Deformations of a Half-Space — a Green's Function Approach. J. Geophys. 43: 761–770.

    Google Scholar 

  • Peters, J., Beaumont, C. 1987. Tidal and Secular Tilt from an Earthquake Zone: Thresholds for Detection of Regional Anomalies. Earth Planet. Sci. Lett. 84: 263–276.

    Google Scholar 

  • Peters, J., Kümpel, H.-J. 1988. Non-linear tilt tides from the Charlevoix seismic zone in Quebec. J. Geophys. 62: 128–135.

    Google Scholar 

  • Prothero, W. A. Jr., Goodkind, J. M. 1968. A Superconducting Gravimeter. Rev. Scient. Instr. 39: 1257–1262.

    Google Scholar 

  • Richter, B. 1987. Das supraleitende Gravimeter. Deutsche Geod. Komm. C 239: 1–124.

    Google Scholar 

  • Richter, B. 1991. Calibration of Superconducting Gravimeters. Cah. Centre Europ. Geodyn. Seism. 3: 99–107.

    Google Scholar 

  • Richter, B., Wenzel, H.-G., Zürn, W., Klopping, F. 1995. From Chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys. Earth planet. Inter. 91: 131–148.

    Google Scholar 

  • Richter, B., Wilmes, H., Nowak, I. 1995. The Frankfurt calibration system for relative gravimeters. Metrologia. 32: 217–223.

    Google Scholar 

  • Rydelek, P. A., Knopoff, L. 1982. Long Period Lunar Tides at the South Pole. J. geophys. Res. 87: 3969–3973.

    Google Scholar 

  • Rydelek, P. A., Zürn, W., Hinderer, J. 1991. On Tidal Gravity, Heat Flow and Lateral Heterogeneities. Phys. Earth planet. Inter. 68: 215–229.

    Google Scholar 

  • Sato, T., Harrison, J. C. 1990. Local Effects on Tidal Strain Measurements at Esashi, Japan. Geophys. J. Int. 102: 513–526.

    Google Scholar 

  • Schneider, M. M. 1971. Erste Beobachtungen der Schweregezeiten in der zentralen Antarktis. Gerl. Beitr. Geoph. 80: 491–496.

    Google Scholar 

  • Schwiderski, E. W. 1980. Ocean tides, Part I. global ocean tidal equations; Part II: a hydrodynamical interpolation model. Mar. Geodesy. 3: 161–255.

    Google Scholar 

  • Shibuya, K., Ogawa, F. 1993. Observation and Analysis of the Tidal Gravity Variation at Asuka Station on the Antarctic Ice Sheet. J. geophys. Res. 98: 6677–6688.

    Google Scholar 

  • Timmen, L., Wenzel, H.-G. 1994. Improved Gravimetric Earth Tide Parameters for Station Hannover. Bull. Inf. Marees Terrestres 119: 8834–8846.

    Google Scholar 

  • Torge, W. 1989. Gravimetry. pp. 1–465. De Gruyter, Berlin.

    Google Scholar 

  • Varga, P. 1974. Dependence of the Love Numbers upon the Inner Structure of the Earth and Comparison of Theoretical Models with Results of Measurements. Pure Appl. Geophys. 112: 777–785.

    Google Scholar 

  • Varga, P., Denis, C. 1988. A Study of the Variation of Tidal Numbers with Earth Structure. Geophys. Trans. 34: 263–282.

    Google Scholar 

  • Varga, P., Hajosy, A., Csapo, G. 1995. Laboratory Calibration of LaCoste Romberg Type Gravimeters by Using a Heavy Cylindrical Ring. Geophys. J. Int. 120: 745–757.

    Google Scholar 

  • Van Ruymbeke, M. 1989. A Calibration System for Gravimeters Using a Sinusoidal Acceleration Resulting from a Vertical Periodic Movement. Bull. Geod. 63: 223–235.

    Google Scholar 

  • Wahr, J. M. 1981. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth. Geophys. J. R. astr. Soc. 64: 677–703.

    Google Scholar 

  • Wahr, J. M., Bergen, Z. 1986. The Effects of Mantle Anelasticity on Nutations, Earth Tides, and Tidal Variation in Rotation Rate. Geophys. J. R. atr. Soc. 87: 633–668.

    Google Scholar 

  • Wang, R. 1991. Tidal Deformations on a Rotating, Spherically Asymmetric, Viscoelastic and Laterally Heterogeneous Earth. pp. 1–139. Peter Lang, Frankfurt.

    Google Scholar 

  • Wang, R. 1994. Effect of Rotation and Ellipticity on Earth Tides. Geophys. J. Int. 117: 562–565.

    Google Scholar 

  • Warburton, R. J., Brinton, E. W. 1995. Recent developments in GWR Instruments' superconducting gravimeters. Cah. Centre Europ. Geodyn. Seism. 11: 23–56.

    Google Scholar 

  • Warburton, R. J., Goodkind, J. M., 1976. Search for Evidence of a Preferred Reference Frame. Astrophys. J. 208: 881–886.

    Google Scholar 

  • Weise, A., Jentzsch, G., Kiviniemi, A., Kääriäinen, J., Ruotsalainen, H. 1995. Tilt measurements in geodynamics — results from the 3-component-station Metsähovi and the clinometric station Lohja / Finland. In: Proc. 12th Int. Symp. Earth Tides. pp. 105–104. H.-T. Hsu (ed.). Science Press, Beijing.

    Google Scholar 

  • Wenzel, H.-G., Zürn, W., Baker, T. F. 1991. In-Situ Calibration of LaCoste-Romberg Earth Tide Gravity Meter. Bull. Inf. Marées Terrestres 109: 7849–7863.

    Google Scholar 

  • Westerhaus, M., Welle, W., Büyükköse, N., Zschau, J. 1991. Temporal Variations of Crustal Properties in the Mudurnu Valley, Turkey: an Indication for Regional Effects of Local Asperities. In: Proc. Int. Conf. Earthquake Predict.. pp. 272–281. Strasbourg.

    Google Scholar 

  • Wilhelm, H. 1978. Upper Mantle Structure and Global Earth Tides. J. Geophys. 44: 435–440.

    Google Scholar 

  • Wilhelm, H., Zürn, W. 1984. Tidal forcing field. Landolt-Börnstein, Neue Serie V/2a 2.5.1: 259–279. H. Soffel, K. Fuchs (eds.), Springer, Berlin.

    Google Scholar 

  • Wyatt, F., Agnew, D.C., Johnson, H. O. 1990. Pinyon Flat Observatory: Comparative Studies and Geophysical Investigations. Open-file report 90–380: 242–248. U. S. Geol. Survey.

    Google Scholar 

  • Wyatt, F., Berger, J. 1980. Investigations of Tilt Measurements Using Shallow Borehole Tiltmeters. J. geophys. Res. 85: 4351–4362.

    Google Scholar 

  • Wyatt, F., Cabaniss, G., Agnew, D. C. 1982. A Comparison of Tiltmeters at Tidal Frequencies. Geophys. Res. Lett. 9: 743–746.

    Google Scholar 

  • Wyatt, F., Levine, J., Agnew, D. C., Zürn, W. 1987. Side — by — Side Tidal Tilt Measurements — Some Disturbing Results. EOS (Trans. Am. geophys. Un.) 68: 1247.

    Google Scholar 

  • Wyatt, F. K., Morrissey, S.-T., Agnew, D. C. 1988. Shallow Borehole Tilt: A Reprise. J. geophys. Res. 93: 9197–9201.

    Google Scholar 

  • Yanshin, A. L., Melchior, P., Keilis-Borok, V. I., de Becker, M., Ducarme, B., Sadovsky, A. M. 1986. Global distribution of tidal anomalies and an attempt of its geotectonic interpretation. In: Proc. 10th Int. Symp. Earth Tides. pp. 731–755. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.

    Google Scholar 

  • Zürn, W., Beaumont, C., Slichter, L. B. 1976. Gravity Tides and Ocean Loading in Southern Alaska. J. geophys. Res. 81: 4923–4932.

    Google Scholar 

  • Zürn, W., Emter, D., Heil, E., Neuberg, J., Grüninger, W. 1986. Comparison of Short-and Long-Baseline Tidal Tilts. In: Proc. 10th Int. Symp. Earth Tides. pp. 61–69. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.

    Google Scholar 

  • Zürn, W., Wenzel, H.-G., Laske, G. 1991. High Quality Data from LaCoste-Romberg Gravimeters with Electrostatic Feedback: A Challenge for Superconducting Gravimeters. Bull. Inf. Marées Terrestres 110: 7940–7952.

    Google Scholar 

  • Zürn, W., Wilhelm, H. 1984. Tides of the solid earth. Landolt-Börnstein, Neue Serie V/2a 2.5.2.: 280–299. H. Soffel, K. Fuchs (eds.), Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Helmut Wilhelm Walter Zürn Hans-Georg Wenzel

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Zürn, W. (1997). Earth tide observations and interpretation. In: Wilhelm, H., Zürn, W., Wenzel, HG. (eds) Tidal Phenomena. Lecture Notes in Earth Sciences, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011458

Download citation

  • DOI: https://doi.org/10.1007/BFb0011458

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62833-0

  • Online ISBN: 978-3-540-68700-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics