Earth tide observations and interpretation

  • Walter Zürn
Earth Tides
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)


Earth tide observations with gravimeters, tilt- and strainmeters were obtained at many stations on the globe. The original aim of the research was to determine the global response of the earth to the tidal forcing in the form of Love and Shida numbers. This goal could not be reached due to strong perturbations of the body tide signals by ocean tide loading and attraction and by local elastic effects for the two latter types of instruments. Higher accuracy is needed for the instruments and the corrections for these perturbations, before the true body tide signal can be gleaned from the observations and information about the elastic and anelastic threedimensional structure of the earth can be retrieved.


Ocean Tide Earth Tide Superconducting Gravimeter Tidal Gravity Tidal Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achilli, V., Baldi, P., Casula, G., Errani, M., Focardi, S., Guerzoni, M., Palmonari, F., Raguni, G. 1995. A calibration system for superconducting gravimeters. Bull. Geod. 69: 73–80.Google Scholar
  2. Agnew, D. C. 1981. Nonlinearity in Rock: Evidence from Earth Tides. J. geophys. Res. 86: 3969–3978.Google Scholar
  3. Angew, D. C. 1986. Strainmeters and Tiltmeters. Rev. Geophysics 24: 579–624.Google Scholar
  4. Agnew, D. C. 1995. Ocean Load Tides at the South Pole: A Validation of Recent Ocean-Tide Models. Geophys. Res. Lett. 22: 3063–3066.Google Scholar
  5. Asch, G., Jahr, T., Jentzsch, G., Kiviniemi, A., Kääriäinen, J. 1987. Measurement of gravity tides along the ‘Blue Road Geotraverse’ in Fennoscandia. Publ. Finnish Geodetic Inst. 107: 1–57.Google Scholar
  6. Baker, T. F. 1980a. Tidal gravity in Britain: tidal loading and the spatial distribution of the marine tide. Geophys. J. R. astr. Soc. 62: 249–267.Google Scholar
  7. Baker, T. F. 1980b. Tidal tilt at Llanrwst, North Wales: tidal loading and Earth structure. Geophys. J. R. astr. Soc. 62: 269–290.Google Scholar
  8. Baker, T. F. 1984. Tidal deformations of the Earth. Sci. Prog., Oxf. 69: 197–233.Google Scholar
  9. Baker, T. F., Curtis, D. J., Dodson, A. H. 1996. A new test of Earth tide models in central Europe. Geophys. Res. Lett. 23: 3559–3562.Google Scholar
  10. Baker, T. F., Edge, R. J., Jeffries, G. 1989. European tidal gravity: an improvement between observations and models. Geophys. Res. Lett. 16: 1109–1112.Google Scholar
  11. Baker, T. F., Lennon, G. W. 1973. Tidal Tilt Anomalies. Nature 243: 75–76.Google Scholar
  12. Beaumont, C., Berger, J. 1974. Earthquake Prediction: Modification of Earth Tide Tilts and Strains by Dilatancy. Geophys. J. R. astr. Soc. 39: 111–118.Google Scholar
  13. Beavan, J. R., Bilham, R., Emter, D., King, G. C. P. 1979. Observations of Strain Enhancements Across a Fissure. Deutsche Geod. Komm. B 231: 47–58.Google Scholar
  14. Berger, J. 1975. A Note on Thermoelastic Strains and Tilts. J. geophys. Res. 80: 274–277.Google Scholar
  15. Berger, J., Beaumont, C. 1975. An Analysis of Tidal Strain Observations from the USA. II. The Inhomogeneous Tide. Bull. seismol. Soc. Am. 66: 1821–1846.Google Scholar
  16. Bonatz, M., Melchior, P., Ducarme, B. 1971. Station: Longyearbyen (Spitsbergen) — Mésures faites dans les trois composantes avec six pendules horizontaux VM et trois gravimètres Askania. Bull. Obs. R. Belg. 4: 1–110.Google Scholar
  17. Bonatz, M., Schüller, K. 1976. Gravimetrische Erdgezeiten-Station Kerguelen — Parameter der Partialtiden für den Beobachtungszeitraum 1973/74. Deutsche Geod. Komm. B 218: 1–26.Google Scholar
  18. Cabaniss, G. H. 1978. The measurement of long period and secular deformation with deep borehole tiltmeters. In: Applications of Geodesy to Geodynamics. pp. 165–169. I. Mueller (ed.). Ohio State University Press, Columbus, Ohio, USA.Google Scholar
  19. Dehant, V. 1991. Review of the Earth Tidal Models and Contribution of Earth Tides in Geodynamics. J. geophys. Res. 96: 20235–20240.Google Scholar
  20. Dehant, V. 1987. Integration of the Gravitational Motion Equations for an Elliptical Uniformly Rotating Earth with an Inelastic Mantle. Phys. Earth planet. Inter. 49: 242–258.Google Scholar
  21. Dehant, V. 1995. Theoretical tidal parameters: state of the art. Bull. Inf. Marées Terrestres. 121: 9027–9029.Google Scholar
  22. Dehant, V., Ducarme, B. 1987. Comparison between the Theoretical and Observed Tidal Gravimetric Factors. Phys. Earth planet. Inter. 49: 192–212.Google Scholar
  23. Dehant, V., Zschau, J. 1989. The Effect of Mantle Inelasticity on Tidal Gravity: a Comparison between the Spherical and the Elliptical Earth Model. Geophys. J. Int. 97: 549–556.Google Scholar
  24. Dittfeld, H.-J., Wenzel, H.-G. 1993. Joint Gravity Tide Recording at Potsdam. In: Proc. IAG-Symp. 113: Geodesy Phys. Earth. pp. 186–189. Springer, Berlin.Google Scholar
  25. Dziewonski, A. M., Anderson, D. L. 1981. Preliminary reference Earth model. Phys. Earth planet. Inter. 25: 297–357.Google Scholar
  26. Edge, R. J., Baker, T. F., Jeffries, G. 1981. Borehole Tilt Measurements: Aperiodic Crustal Tilt in an Aseismic Area. Tectonophysics 71: 97–109.Google Scholar
  27. Emter, D., Zürn, W., Mälzer, H. 1989. Underground Measurements at Tidal Sensitivity with a Long Baseline Differential Fluid Pressure. Deutsche Geod. Komm. B 288: 1–74.Google Scholar
  28. Francis, O., Melchior, P. 1996. Tidal Loading in Western Europe: a Test Area. Geophys. Res. Lett. 23: 2251–2254.Google Scholar
  29. Friederich, W., Wilhelm, H. 1986. Solar Radiational Effects on Earth Tide Measurements. In: Proc. 10th Int. Symp. Earth Tides. pp. 865–880. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.Google Scholar
  30. Gerstenecker, C., Zschau, J., Bonatz, M., 1986. Finite Element Modelling of the Hunsrück Tilt Anomalies — A Model Comparison. In: Proc. 10th Int. Symp. Earth Tides. pp. 797–804. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.Google Scholar
  31. Goodkind, J. M. 1991. The Superconducting Gravimeters: Principle of Operation, Current Performance and Future Prospects. Cah. Centre Europ. Geodyn. Seism. 3: 81–90.Google Scholar
  32. Goodkind, J. M., Czipott, P., Mills, A., Murakami, M., Platzman, P., Young, C., Zuckerman, D. 1993. Test of the gravitational inverse-square law at 0.4 m to 1.4 m mass separation. Phys. Rev. D. 47: 1290–1297Google Scholar
  33. Harrison, J. C. 1976. Cavity and Topographic Effects in Tilt and Strain Measurements. J. geophys. Res. 81: 319–328.Google Scholar
  34. Harrison, J. C. (ed.) 1985. Earth Tides. In: Benchmark Papers in Geology Series. pp. 1–419. Van Nostrand Reinhold, New York.Google Scholar
  35. Hart, R. H. G., Gladwin, M. T., Gwyther, R. L., Agnew, D. C., Wyatt, F. K. 1996. Tidal calibration of borehole strainmeters: Removing the effects of small-scale inhomogeneity. J. geophys. Res. 101: 25553–25571.Google Scholar
  36. Jahr, T., Jentzsch, G., Andersen, N., Remmer, O. 1991. Ocean tidal loading on the shelf areas around Denmark. In: Proc. 11th Int. Symp. Earth Tides., pp. 309–319. J. Kakkuri (ed.). Schweizerbart, Stuttgart.Google Scholar
  37. Jentzsch, G., Ramatschi, M., Madsen, F. 1995. Tidal gravity measurements on Greenland. Bull. Inf. Marées Terrestres. 122: 9239–9248.Google Scholar
  38. Johnson, H. O., Wyatt, F., Agnew, D.C., Zürn, W. 1994. Tidal Tilts at Pinyon Flat, California Measured at Depths of 24 and 120 Meters. In: Proc. 12th Int. Symp. Earth Tides. pp. 129–136. H.-T. Hsu (ed.). Science Press, Beijing.Google Scholar
  39. King, G. C. P., Bilham, R. 1973. Tidal Tilt Measurements in Europe. Nature 243: 74–75.Google Scholar
  40. King, G. C. P., Bilham, R. 1976. A Geophysical Wire Strainmeter. Bull. seism. Soc. Am. 66: 2039–2047.Google Scholar
  41. King, G. C. P., Zürn, W., Evans, R., Emter, D. 1976. Site Correction for Long Period Seismometers, Tiltmeters and Strainmeters. Geophys. J. R. astr. Soc. 44: 405–411.Google Scholar
  42. Knopoff, L., Rydelek, P. A., Zürn, W., Agnew, D. C. 1989. Observations of Load Tides at the South Pole. Phys. Earth Planet. Inter. 54: 33–37.Google Scholar
  43. Kohl, M., Levine, J. 1992. Using a Short Baseline Borehole Tiltmeter to Measure the Regional Tilt. EOS (Trans. Am. geophys. Un.) 73: Suppl. 121.Google Scholar
  44. Kohl, M., Levine, J. 1995. Measurement and Interpretation of Tidal Tilts in Southern California. J. geophys. Res. 100: 3929–3942.Google Scholar
  45. Latynina, L. A., Rizaeva, S. D. 1976. On Tidal-Strain Variations Before Earthquakes. Tectonophysics 31: 121–127.Google Scholar
  46. Llubes, M., Mazzega, P. 1996. The ocean tide gravimetric loading reconsidered. Geophys. Res. Lett. 23: 1481–1484.Google Scholar
  47. Melchior, P. 1981. The tides of the planet earth. pp. 1–609. Pergamon Press, Oxford.Google Scholar
  48. Melchior, P. 1994. A New Data Bank for Tidal Gravity Measurements (DB 92). Phys. Earth planet. Inter. 82: 125–155.Google Scholar
  49. Melchior, P. 1995a. A continuing discussion about the correlation of tidal gravity anomalies and heat flow densities. Phys. Earth planet. Inter. 88: 223–256.Google Scholar
  50. Melchior, P. 1995b. The Trends of Earth Tides Research. In: Proc. 12th Int. Symp. Earth Tides. pp. 29–37. H.-T. Hsu (ed.). Science Press, Beijing.Google Scholar
  51. Meertens, C., Levine, J., Busby, R. 1989. Tilt Observations Using Borehole Tiltmeters: 2. Analysis of Data From Yellowstone National Park. J. geophys. Res. 94: 587–601.Google Scholar
  52. Molodenskii, S. M., Kramer, M. V. 1980. The Influence of Large-scale Horizontal Inhomogeneities in the Mantle on Earth Tides. Bull. Acad. Sci. U.S.S.R., Earth Phys. 16: 1–11.Google Scholar
  53. Müller, G. 1977. Thermoelastic Deformations of a Half-Space — a Green's Function Approach. J. Geophys. 43: 761–770.Google Scholar
  54. Peters, J., Beaumont, C. 1987. Tidal and Secular Tilt from an Earthquake Zone: Thresholds for Detection of Regional Anomalies. Earth Planet. Sci. Lett. 84: 263–276.Google Scholar
  55. Peters, J., Kümpel, H.-J. 1988. Non-linear tilt tides from the Charlevoix seismic zone in Quebec. J. Geophys. 62: 128–135.Google Scholar
  56. Prothero, W. A. Jr., Goodkind, J. M. 1968. A Superconducting Gravimeter. Rev. Scient. Instr. 39: 1257–1262.Google Scholar
  57. Richter, B. 1987. Das supraleitende Gravimeter. Deutsche Geod. Komm. C 239: 1–124.Google Scholar
  58. Richter, B. 1991. Calibration of Superconducting Gravimeters. Cah. Centre Europ. Geodyn. Seism. 3: 99–107.Google Scholar
  59. Richter, B., Wenzel, H.-G., Zürn, W., Klopping, F. 1995. From Chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys. Earth planet. Inter. 91: 131–148.Google Scholar
  60. Richter, B., Wilmes, H., Nowak, I. 1995. The Frankfurt calibration system for relative gravimeters. Metrologia. 32: 217–223.Google Scholar
  61. Rydelek, P. A., Knopoff, L. 1982. Long Period Lunar Tides at the South Pole. J. geophys. Res. 87: 3969–3973.Google Scholar
  62. Rydelek, P. A., Zürn, W., Hinderer, J. 1991. On Tidal Gravity, Heat Flow and Lateral Heterogeneities. Phys. Earth planet. Inter. 68: 215–229.Google Scholar
  63. Sato, T., Harrison, J. C. 1990. Local Effects on Tidal Strain Measurements at Esashi, Japan. Geophys. J. Int. 102: 513–526.Google Scholar
  64. Schneider, M. M. 1971. Erste Beobachtungen der Schweregezeiten in der zentralen Antarktis. Gerl. Beitr. Geoph. 80: 491–496.Google Scholar
  65. Schwiderski, E. W. 1980. Ocean tides, Part I. global ocean tidal equations; Part II: a hydrodynamical interpolation model. Mar. Geodesy. 3: 161–255.Google Scholar
  66. Shibuya, K., Ogawa, F. 1993. Observation and Analysis of the Tidal Gravity Variation at Asuka Station on the Antarctic Ice Sheet. J. geophys. Res. 98: 6677–6688.Google Scholar
  67. Timmen, L., Wenzel, H.-G. 1994. Improved Gravimetric Earth Tide Parameters for Station Hannover. Bull. Inf. Marees Terrestres 119: 8834–8846.Google Scholar
  68. Torge, W. 1989. Gravimetry. pp. 1–465. De Gruyter, Berlin.Google Scholar
  69. Varga, P. 1974. Dependence of the Love Numbers upon the Inner Structure of the Earth and Comparison of Theoretical Models with Results of Measurements. Pure Appl. Geophys. 112: 777–785.Google Scholar
  70. Varga, P., Denis, C. 1988. A Study of the Variation of Tidal Numbers with Earth Structure. Geophys. Trans. 34: 263–282.Google Scholar
  71. Varga, P., Hajosy, A., Csapo, G. 1995. Laboratory Calibration of LaCoste Romberg Type Gravimeters by Using a Heavy Cylindrical Ring. Geophys. J. Int. 120: 745–757.Google Scholar
  72. Van Ruymbeke, M. 1989. A Calibration System for Gravimeters Using a Sinusoidal Acceleration Resulting from a Vertical Periodic Movement. Bull. Geod. 63: 223–235.Google Scholar
  73. Wahr, J. M. 1981. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth. Geophys. J. R. astr. Soc. 64: 677–703.Google Scholar
  74. Wahr, J. M., Bergen, Z. 1986. The Effects of Mantle Anelasticity on Nutations, Earth Tides, and Tidal Variation in Rotation Rate. Geophys. J. R. atr. Soc. 87: 633–668.Google Scholar
  75. Wang, R. 1991. Tidal Deformations on a Rotating, Spherically Asymmetric, Viscoelastic and Laterally Heterogeneous Earth. pp. 1–139. Peter Lang, Frankfurt.Google Scholar
  76. Wang, R. 1994. Effect of Rotation and Ellipticity on Earth Tides. Geophys. J. Int. 117: 562–565.Google Scholar
  77. Warburton, R. J., Brinton, E. W. 1995. Recent developments in GWR Instruments' superconducting gravimeters. Cah. Centre Europ. Geodyn. Seism. 11: 23–56.Google Scholar
  78. Warburton, R. J., Goodkind, J. M., 1976. Search for Evidence of a Preferred Reference Frame. Astrophys. J. 208: 881–886.Google Scholar
  79. Weise, A., Jentzsch, G., Kiviniemi, A., Kääriäinen, J., Ruotsalainen, H. 1995. Tilt measurements in geodynamics — results from the 3-component-station Metsähovi and the clinometric station Lohja / Finland. In: Proc. 12th Int. Symp. Earth Tides. pp. 105–104. H.-T. Hsu (ed.). Science Press, Beijing.Google Scholar
  80. Wenzel, H.-G., Zürn, W., Baker, T. F. 1991. In-Situ Calibration of LaCoste-Romberg Earth Tide Gravity Meter. Bull. Inf. Marées Terrestres 109: 7849–7863.Google Scholar
  81. Westerhaus, M., Welle, W., Büyükköse, N., Zschau, J. 1991. Temporal Variations of Crustal Properties in the Mudurnu Valley, Turkey: an Indication for Regional Effects of Local Asperities. In: Proc. Int. Conf. Earthquake Predict.. pp. 272–281. Strasbourg.Google Scholar
  82. Wilhelm, H. 1978. Upper Mantle Structure and Global Earth Tides. J. Geophys. 44: 435–440.Google Scholar
  83. Wilhelm, H., Zürn, W. 1984. Tidal forcing field. Landolt-Börnstein, Neue Serie V/2a 2.5.1: 259–279. H. Soffel, K. Fuchs (eds.), Springer, Berlin.Google Scholar
  84. Wyatt, F., Agnew, D.C., Johnson, H. O. 1990. Pinyon Flat Observatory: Comparative Studies and Geophysical Investigations. Open-file report 90–380: 242–248. U. S. Geol. Survey.Google Scholar
  85. Wyatt, F., Berger, J. 1980. Investigations of Tilt Measurements Using Shallow Borehole Tiltmeters. J. geophys. Res. 85: 4351–4362.Google Scholar
  86. Wyatt, F., Cabaniss, G., Agnew, D. C. 1982. A Comparison of Tiltmeters at Tidal Frequencies. Geophys. Res. Lett. 9: 743–746.Google Scholar
  87. Wyatt, F., Levine, J., Agnew, D. C., Zürn, W. 1987. Side — by — Side Tidal Tilt Measurements — Some Disturbing Results. EOS (Trans. Am. geophys. Un.) 68: 1247.Google Scholar
  88. Wyatt, F. K., Morrissey, S.-T., Agnew, D. C. 1988. Shallow Borehole Tilt: A Reprise. J. geophys. Res. 93: 9197–9201.Google Scholar
  89. Yanshin, A. L., Melchior, P., Keilis-Borok, V. I., de Becker, M., Ducarme, B., Sadovsky, A. M. 1986. Global distribution of tidal anomalies and an attempt of its geotectonic interpretation. In: Proc. 10th Int. Symp. Earth Tides. pp. 731–755. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.Google Scholar
  90. Zürn, W., Beaumont, C., Slichter, L. B. 1976. Gravity Tides and Ocean Loading in Southern Alaska. J. geophys. Res. 81: 4923–4932.Google Scholar
  91. Zürn, W., Emter, D., Heil, E., Neuberg, J., Grüninger, W. 1986. Comparison of Short-and Long-Baseline Tidal Tilts. In: Proc. 10th Int. Symp. Earth Tides. pp. 61–69. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.Google Scholar
  92. Zürn, W., Wenzel, H.-G., Laske, G. 1991. High Quality Data from LaCoste-Romberg Gravimeters with Electrostatic Feedback: A Challenge for Superconducting Gravimeters. Bull. Inf. Marées Terrestres 110: 7940–7952.Google Scholar
  93. Zürn, W., Wilhelm, H. 1984. Tides of the solid earth. Landolt-Börnstein, Neue Serie V/2a 2.5.2.: 280–299. H. Soffel, K. Fuchs (eds.), Springer, Berlin.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Walter Zürn
    • 1
  1. 1.Black Forest ObservatoryWolfachGermany

Personalised recommendations