Advertisement

Tidal response of the solid Earth

  • Rongjiang Wang
Earth Tides
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)

Abstract

In this note, the boundary-value problem for Earth tides is investigated. The tidal motion of the solid Earth is treated as an infinitesimal perturbation superimposed on the hydrostatic equilibrium of a rotating and self-gravitating Earth. Both Lagrangian (material-fixed) and Eulerian (space-fixed) incrementals are defined for describing the tidal perturbations. The linearized differential equations of motion and boundary conditions are derived and given in three different forms, which differ from each other in whether the pure Lagrangian incrementals, or the pure Eulerian incrementals, or a mixed combination of the two are chosen for describing variations in the potential and stress field. Analytical solutions for simple Earth models are discussed. In case of a rotating, elliptical, incompressible and homogeneous Earth, we have found inconsistency in Love's equations of motion and several calculation errors in his analytical expressions. Semi-analytical methods which are mostly used nowadays to determine the Earth tide parameters are presented and the results of different authors are discussed.

Keywords

Earth Tide Lagrangian Description Love Number Tidal Motion Eulerian Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaumont, C. and J. Berger. 1976. Earthquake prediction: modification of earth tide tilts and strains by dilatancy. Geophys. J. R. Astr. Soc. 39: 111–118.Google Scholar
  2. Dahlen, F.A. 1972. Elastic dislocation theory of a self gravitating elastic configuration with an initial stress field. Geophys. J. R. Astr. Soc. 28: 357–383.Google Scholar
  3. Dehant, V. 1987. Integration of the gravitational motion equations for an elliptical uniformly rotating Earth with an inelastic mantle. Phys. Earth Planet. Inter. 49: 242–258.Google Scholar
  4. Dehant, V. 1995. Theoretical tidal parameters: state of the art. Bull. Inf. Marées Terrestres 121: 9027–9029.Google Scholar
  5. Dehant, V. and B. Ducarme. 1987. Comparison between the theoretical and observed tidal gravimetric factors. Phys. Earth Plant. Inter. 49: 192–212.Google Scholar
  6. Dehant, V. and J. Zschau. 1989. The effect of mantle anelasticity on tidal gravity: a comparison between the spherical and the elliptical Earth model. Geophys. J. 97: 549–555.Google Scholar
  7. Dziewonski, A.M. and D.L. Anderson. 1981. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25: 297–356.Google Scholar
  8. Dziewonski, A.M. 1984. Mapping the lower mantle: determination of lateral Heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89: 5929–5952.Google Scholar
  9. Farrell, W.E. 1972. Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 10: 767–797.Google Scholar
  10. Gerstenecker, C., J. Zschau and M. Bonatz. 1986. Finite element modeling of the Hunsrück tilt anomalies — a model comparison. Proc. 10. Int. Symp. Earth Tides, R. Vieira (ed.), Cons. Sup. Invest. Cient, Madrid: 797–804.Google Scholar
  11. Gilbert, F. and A.M. Dziewonski. 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Trans. R. Soc. 278A: 187–269.Google Scholar
  12. Harrison, J.C. (ed.). 1985. Earth Tides. Benchmark Papers in Geology Series, Van Nostrand Reinhold, New York. 419 pp.Google Scholar
  13. Jeffreys, H. and R.O. Vicente. 1957a. The theory of nutation and the variation of latitude. Mon. Not. R. astr. Soc. 117: 142–161.Google Scholar
  14. Jeffreys, H. and R.O. Vicente. 1957b. The theory of nutation and the variation of latitude: the Roche model core. Mon. Not. R. astr. Soc. 117: 162–173.Google Scholar
  15. Li, G. and H.T. Hsu. 1989. The tidal modeling theory with a lateral inhomogeneous, inelastic mantle. Proc. 11th Int. Symp. on Earth tides. Helsinki, Finland. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  16. Longman, I.M. 1962. A Green's function for determining the deformation of the Earth under surface mass loads: 1. theory. J. Geophys. Res. 67: 845–850.Google Scholar
  17. Longman, I.M. 1963. A Green's function for determining the deformation of the Earth under surface mass loads: 2. computations and numerical results. J. Geophys. Res. 68: 485–496.Google Scholar
  18. Love, A.E.H. 1911. Some problems of Geodynamics, Dover, New York. 180 pp.Google Scholar
  19. Meertens, C. 1987. Tilt Tides and Tectonics at Yellowstone National Park. PhD Thesis. University of Colorado, Boulder, USA. 236 pp.Google Scholar
  20. Melchior, P. 1978. The Tides of the Planet Earth. Pergamon, Oxford. 609 pp.Google Scholar
  21. Molodensky, M.S. 1961. The theory of nutation and diurnal Earth tides. Communs Obs. r. Belg. 288: 25–56.Google Scholar
  22. Molodensky, S.M. and M.V. Kramer. 1980. The influence of large-scale horizontal inhomogeneities in the mantle on earth tides. Bull. Acad. Sci. USSR, Earth Physics. 16: 1–11.Google Scholar
  23. Sasao, T., S. Okubo and M. Sasao. 1980. A simple theory on dynamical effects of stratified fluid core upon nutational motion of the Earth. Proc. IAU Symp. No. 78. Nutation and the Earth's Rotation. Kiev. May 1977. Edi. E.P. Fedorov, M.L. Smith and P.L. Bender.Google Scholar
  24. Shen, P.-Y. and L. Mansinha. 1976. Oscillation, nutation, and wobble of an elliptical rotating Earth with fluid outer core. Geophys. J. R. astr. Soc. 46: 467–496.Google Scholar
  25. Smith, M.L. 1974. The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical Earth. Geophys. J. R. astr. Soc. 37: 491–526.Google Scholar
  26. Smith, M.L. 1976. Translational inner core oscillations of a rotating, slightly elliptical Earth. J. Geophys. Res. 81: 3055–3065.Google Scholar
  27. Smith, M.L. 1977. Wobble and nutation of the Earth. Geophys. J. R. astr. Soc. 50: 103–140.Google Scholar
  28. Wahr, J.M. 1979. The Tidal Motion of a Rotating, Elliptical, Elastic and Oceanless Earth. PhD Thesis. University of Colorado, Boulder, USA. 216 pp.Google Scholar
  29. Wahr, J.M. 1981a. A normal mode expansion for the forced response of a rotating Earth. Geophys. J. R. Astr. Soc. 64: 651–675.Google Scholar
  30. Wahr, J.M. 1981b. Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astr. Soc. 64: 677–703.Google Scholar
  31. Wahr, J.M. 1981c. The forced nutations of an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astr. Soc. 64: 705–727.Google Scholar
  32. Wahr, J.M. 1982. Computing tides, nutations and tidally-induced variations in the Earth's rotation rate for a rotating elliptical Earth. Lecture at the Third Int. Summer School in the Mountains on “Geodesy and Global Geodynamics”. Admont, Austria, 1982. Edi. H. Moritz and H. Sünkel. 327–379.Google Scholar
  33. Wahr, J.M. and Z. Bergen. 1989. The effects of mantle anelasticity on nutations, Earth tides, and tidal variations of rotation rate. Geophys. J. R. astr. Soc. 87: 633–668Google Scholar
  34. Wang, R. 1986. Das viskoelastische Verhalten der Erde auf langfristige Gezeitenterme. Diplomarbeit. Math.-Nat. Fak. Universität Kiel. Germany, 94 pp.Google Scholar
  35. Wang, R. 1991. Tidal Deformations on a Rotating, Spherically Asymmetric, Viscoelastic and Laterally Heterogeneous Earth, European University Studies. Series XVII. Earth Sciences. Vol. 5. Peter Lang, Frankfurt am Main. 139 pp.Google Scholar
  36. Wang, R. 1994. Effect of rotation and ellipticity on earth tides. Geophys. J. Int. 117: 562–565.Google Scholar
  37. Woodhouse, J.H. and A.M. Dziewonski. 1984. Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res. 89: 5953–5986.Google Scholar
  38. Zschau, J. 1979. Auflastgezeiten. Habilitationsschift. Math.-Nat. Fak. Universität Kiel, Germany. 243 pp.Google Scholar
  39. Zschau, J. and R. Wang. 1986. Imperfect elasticity in the Earth's mantle: implications for the Earth tides and long period deformations. Proc. 10th Int. Symp. Earth Tides. Madrid, Spain. Edi. R. Vieira. 379–384.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Rongjiang Wang
    • 1
  1. 1.GeoForschungsZentrum Potsdam (GFZ)PotsdamGermany

Personalised recommendations