Advertisement

Tide-generating potential for the earth

  • Hans-Georg Wenzel
Earth Tides
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)

Abstract

We will discuss in the following the definition and computation of tidal accelerations and of the tidal potential, the expansion of the tidal potential in spherical harmonics, the spectral analysis of the spherical harmonic expansion yielding a tidal potential catalogue, the accuracy of the currently available tidal potential catalogues, and the computation of the tidal forcing function (tidal potential and tidal accelerations) for a rigid Earth using a tidal potential catalogue.

Keywords

Spherical Harmonic Celestial Body Tidal Wave Spherical Harmonic Expansion Centrifugal Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretagnon, P. 1982. Théorie du mouvement de l'ensemble des planètes, solution VSOP82. Astron. Astrophys. 144: 278–288.Google Scholar
  2. Brown, W.E. 1905. Theory of the motion of the Moon. Mem. Royal Astron. Soc. 57: 136–141.Google Scholar
  3. Büllesfeld, F.-J. 1985. Ein Beitrag zur harmonischen Darstellung des gezeitenerzeugenden Potentials. Deutsche Geod. Komm. C 314: 1–103.Google Scholar
  4. Cartwright, D.E. and R.J. Tayler. 1971. New Computations of the Tide Generating Potential. Geophys. J. R. astr. Soc. 23: 45–74.Google Scholar
  5. Cartwright, D.E. and C.A. Edden. 1973. Corrected Tables of Tidal Harmonics. Geophys. J. R. astr. Soc. 33: 253–264.Google Scholar
  6. Chapront-Touzé, M. and J. Chapront. 1988. ELP-2000-85: A semi-analytical lunar ephemeris adequate for historical times. Astron. Astrophys. 190: 342–352.Google Scholar
  7. Dahlen, F.A. 1993. Effect of the Earth's ellipticity on the lunar potential. Geophys. J. Int. 113: 250–251.Google Scholar
  8. Darwin, G.H. 1883. Report of a committee for the harmonic analysis of tidal observations. Brit. Ass. Rep.: 48–118.Google Scholar
  9. Doodson, A.T. 1921. The harmonic development of the tide generating potential. Proc. Royal Soc. London A 100: 306–328. Reprint in Int. Hydrogr. Rev. 31 Google Scholar
  10. Hartmann, T. and H.-G. Wenzel. 1994a. Catalogue of the earth tide generating potential due to the planets. Bull. Inf. Marées Terrestres 119: 8847–8880.Google Scholar
  11. Hartmann, T. and H.-G. Wenzel. 1994b. The harmonic development of the earth tide generating potential due to the direct effects of the planets. Geophys. Res. Lett. 21: 1991–1993.Google Scholar
  12. Hartmann, T. and H.-G. Wenzel. 1995a. The HW95 tidal potential catalogue. Geophys. Res. Lett. 22: 3553–3556.Google Scholar
  13. Hartmann, T. and H.-G. Wenzel. 1995b. Catalogue HW95 of the tide generating potential. Bull. Inf. Marées Terrestres 123: 9278–9301.Google Scholar
  14. Heiskanen, W.A. and H. Moritz. 1967. Physical geodesy. W.H. Freeman and Co., San Francisco.Google Scholar
  15. Ilk, K.H. 1983. Ein Beitrag zur Dynamik ausgedehnter Körper — Gravitationswechselwirkung. Deutsche Geod. Komm., C 288.Google Scholar
  16. Merriam, J.B. 1993. A comparison of recent tidal catalogues. Bull. Inf. Marées Terrestres 115: 8515–8535.Google Scholar
  17. Newcomb, S. 1897. A new determination of precessional constant with the resulting precessional motions. Astron. Papers Am. Ephemeris VIII, Part 1, Washington.Google Scholar
  18. Roosbeek, F. 1996. RATGP95: A harmonic development of the tide generating potential using an analytical method. Geophys. J. Int. 126: 197–204.Google Scholar
  19. Simon, J.L., P. Bretagnon, J. Chapront, M. Chapront-Touzé, G. Francou and J. Laskar. 1994. Numerical expression for precession formulae and mean elements for the Moon and the planets. Astron. Astrophys. 282: 663–683.Google Scholar
  20. Standish, E.M. and J.G. Williams. 1981. Planetary and lunar ephemerides DE200 / LE200 (magnetic tape).Google Scholar
  21. Standish, E.M., X.X. Newhall, J.G. Williams and W.F. Folkner. 1995. JPL planetary and lunra ephemerides DE403/LE403. Jet Propulsion Laboratory, Inter Office Memorandum 314.10-127, Pasadena.Google Scholar
  22. Tamura, Y. 1987. A harmonic development of the tide-generating potential. Bull. Inf. Marées Terrestres 99: 6813–6855.Google Scholar
  23. Tamura, Y. 1993. Additional terms to the tidal harmonic tables. Proc. 12th Int. Symp. Earth Tides pp. 345–350. H.-T. Hsu (ed.). Science Press, Beijing.Google Scholar
  24. Wenzel, H.-G. 1974. The correction of the tidal force development to the ellipsoidal normal. Bull. Inf. Marées Terrestres 68: 3748–3790.Google Scholar
  25. Wenzel, H.-G. 1976. Zur Genauigkeit von gravimetrischen Erdgezeitenbeobachtungen. Wiss. Arbeiten d. Lehrstühle Geodäsie, Photogrammetrie u. Kartographie Techn. Univ. Hannover 67: 1–177.Google Scholar
  26. Wenzel, H.-G. 1985. Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Wiss. Arbeiten Fachr. Vermessungswesen Univ. Hannover 137: 1–154. Hannover.Google Scholar
  27. Wenzel, H.-G. 1996a. Accuracy assesment for tidal potential catalogues. Bull. Inf. Marées Terrestres 124: 9394–9416.Google Scholar
  28. Wilhelm, H. 1982. Earth's flattening effects on the tidal forcing field. J. Geophysics, 1983: 131–135.Google Scholar
  29. Wilhelm, H. and W. Zürn. 1984. Tides of the Earth. In: Landolt-Börnstein, Neue Serie V/2a 2.5.2: 259–279. H. Soffel, K. Fuchs (eds.), Springer, Berlin.Google Scholar
  30. Xi, Q. 1987. A new complete development of the tide-generating potential for the epoch J2000. Bull. Inf. Marées Terrestres 99: 6766–6812.Google Scholar
  31. Xi, Q. 1989. The precision of the development of the tidal generating and some explanatory notes. Bull. Inf. Marées Terrestres 105: 7396–7404.Google Scholar
  32. Xi, Q. 1993. On the comparison of the new developments of the tidal generating potential. Bull. Inf. Marées Terrestres 115: 8439–8445.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Hans-Georg Wenzel
    • 1
  1. 1.Geodätisches InstitutUniversität KarlsruheKarlsruheGermany

Personalised recommendations