Advertisement

Spherical wavelets: Efficiently representing functions on a sphere

  • Peter Schröder
  • Wim Sweldens
Chapter
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 90)

Keywords

Wavelet Coefficient Scaling Function Subdivision Scheme Multiresolution Analysis Haar Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfeld, P., Neamtu, M., and Schumaker, L. L. Bernstein-Bézier polynomials on circles, sphere, and sphere-like surfaces. Preprint.Google Scholar
  2. 2.
    Carnicer, J. M., Dahmen, W., and Peña, J. M. Local decompositions of refinable spaces. Tech. rep., Insitut für Geometrie und angewandete Mathematik, RWTH Aachen, 1994.Google Scholar
  3. 3.
    Certain, A., J. Popović, T. DeRose, T. Duchamp D. Salesin and Werner Stuetzle Interactive Multiresolution Surface Viewing Computer Graphics (SIGGRAPH '96 Proceedings) (1996), 91–98Google Scholar
  4. 4.
    Christensen, P. H., Stollnitz, E. J., Salesin, D. H., and DeRose, T. D. Wavelet Radiance. In Proceedings of the 5th Eurographics Workshop on Rendering, 287–302, June 1994.Google Scholar
  5. 5.
    Cohen, A., Daubechies, I., and Feauveau, J. Bi-orthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45 (1992), 485–560.Google Scholar
  6. 6.
    Cohen, A., Daubechies, I., Jawerth, B., and Vial, P. Multiresolution analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris Sér. I Math. I, 316 (1993), 417–421.Google Scholar
  7. 7.
    Dahlke, S., Dahmen, W., Schmitt, E., and Weinreich, I. Multiresolution analysis and wavelets on S2 and S3. Tech. Rep. 104, Institut für Geometrie und angewandete Mathematik, RWTH Aachen, 1994.Google Scholar
  8. 8.
    Dahmen, W. Stability of multiscale transformations. Tech. rep., Institut für Geometrie und angewandete Mathematik, RWTH Aachen, 1994.Google Scholar
  9. 9.
    Dahmen, W., Prössdorf, S., and Schneider, R. Multiscale methods for pseudo-differential equations on smooth manifolds. In Conference on Wavelets: Theory, Algorithms, and Applications, C. K. C. et al., Ed. Academic Press, San Diego, CA, 1994, pp. 385–424.Google Scholar
  10. 10.
    Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series in Appl. Math., Vol. 61. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.Google Scholar
  11. 11.
    Dutton, G. Locational Properties of Quaternary Triangular Meshes. In Proceedings of the Fourth International Symposium on Spatial Data Handling, 901–910, July 1990.Google Scholar
  12. 12.
    Dyn, N., Levin, D., and Gregory, J. A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control. Transactions on Graphics 9, 2 (April 1990), 160–169.Google Scholar
  13. 13.
    Fekete, G. Rendering and Managing Spherical Data with Sphere Quadtrees. In Proceedings of Visualization 90, 1990.Google Scholar
  14. 14.
    Freeden, W., and Windheuser, U. Spherical Wavelet Transform and its Discretization. Tech. Rep. 125, Universität Kaiserslautern, Fachbereich Mathematik, 1994.Google Scholar
  15. 15.
    Girardi, M., and Sweldens, W. A new class of unbalanced Haar wavelets that form an unconditional basis for Lp on general measure spaces. Tech. Rep. 1995:2, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995. (ftp://ftp.math.scarolina.edu/pub/imi_95/imi95_2.ps).Google Scholar
  16. 16.
    Gondek, J. S., Meyer, G. W., and Newman, J. G. Wavelength Dependent Reflectance Functions. In Computer Graphics Proceedings, Annual Conference Series, 213–220, 1994.Google Scholar
  17. 17.
    Gortler, S., Schröder, P., Cohen, M., and Hanrahan, P. Wavelet Radiosity. In Computer Graphics Proceedings, Annual Conference Series, 221–230, August 1993.Google Scholar
  18. 18.
    Gortler, S. J., and Cohen, M. F. Hierarchical and Variational Geometric Modeling with Wavelets. In Proceedings Symposium on Interactive 3D Graphics, 35–42, April 1995.Google Scholar
  19. 19.
    Lee A., W. Sweldens, P. Schröder, L. Cowsar and D. Dobkin MAPS: Multiresolution Adaptive Parameterization of Surfaces Computer Graphics (SIGGRAPH '98 Proceedings), 95–104, 1998Google Scholar
  20. 20.
    Liu, Z., Gortler, S. J., and Cohen, M. F. Hierarchical Spacetime Control. Computer Graphics Proceedings, Annual Conference Series, 35–42, July 1994.Google Scholar
  21. 21.
    Lounsbery, M. Multiresolution Analysis for Surfaces of Arbitrary Topological Type. PhD thesis, University of Washington, 1994.Google Scholar
  22. 22.
    Lounsbery, M., DeRose, T. D., and Warren, J. Multiresolution Surfaces of Arbitrary Topological Type. Department of Computer Science and Engineering 93-10-05, University of Washington, October 1993. Updated version available as 93-10-05b, January, 1994.Google Scholar
  23. 23.
    Mitrea, M. Singular integrals, Hardy spaces and Clifford wavelets. No. 1575 in Lecture Notes in Math. 1994.Google Scholar
  24. 24.
    Nielson, G. M. Scattered Data Modeling. IEEE Computer Graphics and Applications 13, 1 (January 1993), 60–70.Google Scholar
  25. 25.
    Schlick, C. A customizable reflectance model for everyday rendering. In Fourth Eurographics Workshop on Rendering, 73–83, June 1993.Google Scholar
  26. 26.
    Schröder, P., and Hanrahan, P. Wavelet Methods for Radiance Computations. In Proceedings 5th Eurographics Workshop on Rendering, June 1994.Google Scholar
  27. 27.
    Schröder, P., and Sweldens, W. Spherical wavelets: Texture processing. Tech. Rep. 1995:4, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995. (ftp://ftp.math.scarolina.edu/pub/imi_95/imi95_4.ps).Google Scholar
  28. 28.
    Sillion, F. X., Arvo, J. R., Westin, S. H., and Greenberg, D. P. A global illumination solution for general reflectance distributions. Computer Graphics (SIGGRAPH '91 Proceedings), Vol. 25, No. 4, pp. 187–196, July 1991.Google Scholar
  29. 29.
    Sweldens, W. The lifting scheme: A construction of second generation wavelets. Department of Mathematics, University of South Carolina.Google Scholar
  30. 30.
    Sweldens, W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Tech. Rep. 1994:7, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1994. (ftp://ftp.math.scarolina.edu/pub/imi_94/imi94_7.ps).Google Scholar
  31. 31.
    Westerman, R. A Multiresolution Framework for Volume Rendering. In Proceedings ACM Workshop on Volume Visualization, 51–58, October 1994.Google Scholar
  32. 32.
    Westin, S. H., Arvo, J. R., and Torrance, K. E. Predicting reflectance functions from complex surfaces. Computer Graphics (SIGGRAPH '92 Proceedings), Vol. 26, No. 2, pp. 255–264, July 1992.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Peter Schröder
    • 1
  • Wim Sweldens
    • 2
  1. 1.Department of Computer ScienceCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Bell LaboratoriesLucent TechnologiesMurray HillU.S.A.

Personalised recommendations