Wavelets in the Geosciences pp 108-130 | Cite as
Part II: Second generation wavelets
Chapter
First Online:
- 1 Citations
- 846 Downloads
Keywords
Weight Function Scaling Function Subdivision Scheme Coarse Level Multiresolution Analysis
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.L. Andersson, N. Hall, B. Jawerth, and G. Peters. Wavelets on closed subsets of the real line. In [23], pages 1–61.Google Scholar
- 2.J. M. Carnicer, W. Dahmen, and J. M. Peña. Local decompositions of refinable spaces. Appl. Comput. Harmon. Anal., 3:127–153, 1996.Google Scholar
- 3.C. Chui and E. Quak. Wavelets on a bounded interval. In D. Braess and L. L. Schumaker, editors, Numerical Methods of Approximation Theory, pages 1–24. Birkhäuser-Verlag, Basel, 1992.Google Scholar
- 4.C. K. Chui, L. Montefusco, and L. Puccio, editors. Conference on Wavelets: Theory Algorithms, and Applications. Academic Press, San Diego, CA, 1994.Google Scholar
- 5.A. Cohen, I. Daubechies, and J. Feauveau. Bi-orthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math., 45:485–560, 1992.Google Scholar
- 6.A. Cohen, I. Daubechies, and P. Vial. Multiresolution analysis, wavelets and fast algorithms on an interval. Appl. Comput. Harmon. Anal., 1(1):54–81, 1993.Google Scholar
- 7.W. Dahmen. Stability of multiscale transformations. J. Fourier Anal. Appl., 2(4):341–361, 1996.Google Scholar
- 8.W. Dahmen, S. Prössdorf, and R. Schneider. Multiscale methods for pseudo-differential equations on smooth manifolds. In [4], pages 385–424. 1994.Google Scholar
- 9.I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series in Appl. Math., Vol. 61. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.Google Scholar
- 10.G. Deslauriers and S. Dubuc. Interpolation dyadique. In Fractals, dimensions non entières et applications, pages 44–55. Masson, Paris, 1987.Google Scholar
- 11.G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes. Constr. Approx., 5(1):49–68, 1989.Google Scholar
- 12.D. L. Donoho. Smooth wavelet decompositions with blocky coefficient kernels. In [23], pages 259–308.Google Scholar
- 13.D. L. Donoho. Interpolating wavelet transforms. Preprint, Department of Statistics, Stanford University, 1992.Google Scholar
- 14.D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, to appear, 1994.Google Scholar
- 15.D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. 1995.Google Scholar
- 16.N. Dyn, D. Levin, and J. Gregory. A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Des., 4:257–268, 1987.Google Scholar
- 17.M. Girardi and W. Sweldens. A new class of unbalanced Haar wavelets that form an unconditional basis for Lp on general measure spaces. J. Fourier Anal. Appl., 3(4), 1997.Google Scholar
- 18.M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution surfaces of arbitrary topological type. ACM Trans. on Graphics, 16(1):34–73, 1997.Google Scholar
- 19.S. G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(ℜ211D;). Trans. Amer. Math. Soc., 315(1):69–87, 1989.Google Scholar
- 20.Y. Meyer. Ondelettes et Opérateurs, I: Ondelettes, II: Opérateurs de Calderón-Zygmund, III: (with R. Coifman), Opérateurs multilinéaires. Hermann, Paris, 1990. English translation of first volume, Wavelets and Operators, is published by Cambridge University Press, 1993.Google Scholar
- 21.W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes. Cambridge University Press, 2nd edition, 1993.Google Scholar
- 22.P. Schröder and W. Sweldens. Spherical wavelets: Efficiently representing functions on the sphere. Computer Graphics Proceedings, (SIGGRAPH 95), pages 161–172, 1995.Google Scholar
- 23.L. L. Schumaker and G. Webb, editors. Recent Advances in Wavelet Analysis. Academic Press, New York, 1993.Google Scholar
- 24.J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag, New York, 1980.Google Scholar
- 25.W. Sweldens. Construction and Applications of Wavelets in Numerical Analysis. PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 1994.Google Scholar
- 26.W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal., 3(2):186–200, 1996.Google Scholar
- 27.W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 29(2):511–546, 1997.Google Scholar
- 28.M. Vetterli and C. Herley. Wavelets and filter banks: Theory and design. IEEE Trans. Acoust. Speech Signal Process., 40(9):2207–2232, 1992.Google Scholar
Copyright information
© Springer-Verlag 2000