Advertisement

Part II: Second generation wavelets

Chapter
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 90)

Keywords

Weight Function Scaling Function Subdivision Scheme Coarse Level Multiresolution Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Andersson, N. Hall, B. Jawerth, and G. Peters. Wavelets on closed subsets of the real line. In [23], pages 1–61.Google Scholar
  2. 2.
    J. M. Carnicer, W. Dahmen, and J. M. Peña. Local decompositions of refinable spaces. Appl. Comput. Harmon. Anal., 3:127–153, 1996.Google Scholar
  3. 3.
    C. Chui and E. Quak. Wavelets on a bounded interval. In D. Braess and L. L. Schumaker, editors, Numerical Methods of Approximation Theory, pages 1–24. Birkhäuser-Verlag, Basel, 1992.Google Scholar
  4. 4.
    C. K. Chui, L. Montefusco, and L. Puccio, editors. Conference on Wavelets: Theory Algorithms, and Applications. Academic Press, San Diego, CA, 1994.Google Scholar
  5. 5.
    A. Cohen, I. Daubechies, and J. Feauveau. Bi-orthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math., 45:485–560, 1992.Google Scholar
  6. 6.
    A. Cohen, I. Daubechies, and P. Vial. Multiresolution analysis, wavelets and fast algorithms on an interval. Appl. Comput. Harmon. Anal., 1(1):54–81, 1993.Google Scholar
  7. 7.
    W. Dahmen. Stability of multiscale transformations. J. Fourier Anal. Appl., 2(4):341–361, 1996.Google Scholar
  8. 8.
    W. Dahmen, S. Prössdorf, and R. Schneider. Multiscale methods for pseudo-differential equations on smooth manifolds. In [4], pages 385–424. 1994.Google Scholar
  9. 9.
    I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series in Appl. Math., Vol. 61. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.Google Scholar
  10. 10.
    G. Deslauriers and S. Dubuc. Interpolation dyadique. In Fractals, dimensions non entières et applications, pages 44–55. Masson, Paris, 1987.Google Scholar
  11. 11.
    G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes. Constr. Approx., 5(1):49–68, 1989.Google Scholar
  12. 12.
    D. L. Donoho. Smooth wavelet decompositions with blocky coefficient kernels. In [23], pages 259–308.Google Scholar
  13. 13.
    D. L. Donoho. Interpolating wavelet transforms. Preprint, Department of Statistics, Stanford University, 1992.Google Scholar
  14. 14.
    D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, to appear, 1994.Google Scholar
  15. 15.
    D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. 1995.Google Scholar
  16. 16.
    N. Dyn, D. Levin, and J. Gregory. A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Des., 4:257–268, 1987.Google Scholar
  17. 17.
    M. Girardi and W. Sweldens. A new class of unbalanced Haar wavelets that form an unconditional basis for Lp on general measure spaces. J. Fourier Anal. Appl., 3(4), 1997.Google Scholar
  18. 18.
    M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution surfaces of arbitrary topological type. ACM Trans. on Graphics, 16(1):34–73, 1997.Google Scholar
  19. 19.
    S. G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(ℜ211D;). Trans. Amer. Math. Soc., 315(1):69–87, 1989.Google Scholar
  20. 20.
    Y. Meyer. Ondelettes et Opérateurs, I: Ondelettes, II: Opérateurs de Calderón-Zygmund, III: (with R. Coifman), Opérateurs multilinéaires. Hermann, Paris, 1990. English translation of first volume, Wavelets and Operators, is published by Cambridge University Press, 1993.Google Scholar
  21. 21.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes. Cambridge University Press, 2nd edition, 1993.Google Scholar
  22. 22.
    P. Schröder and W. Sweldens. Spherical wavelets: Efficiently representing functions on the sphere. Computer Graphics Proceedings, (SIGGRAPH 95), pages 161–172, 1995.Google Scholar
  23. 23.
    L. L. Schumaker and G. Webb, editors. Recent Advances in Wavelet Analysis. Academic Press, New York, 1993.Google Scholar
  24. 24.
    J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag, New York, 1980.Google Scholar
  25. 25.
    W. Sweldens. Construction and Applications of Wavelets in Numerical Analysis. PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 1994.Google Scholar
  26. 26.
    W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal., 3(2):186–200, 1996.Google Scholar
  27. 27.
    W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 29(2):511–546, 1997.Google Scholar
  28. 28.
    M. Vetterli and C. Herley. Wavelets and filter banks: Theory and design. IEEE Trans. Acoust. Speech Signal Process., 40(9):2207–2232, 1992.Google Scholar

Copyright information

© Springer-Verlag 2000

Personalised recommendations