Advertisement

Introduction to continuous wavelet analysis

  • Matthias Holschneider
Chapter
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 90)

Keywords

Wavelet Analysis Wavelet Coefficient Fourier Space Morlet Wavelet Fourier Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Alexandrescu, D. Gibert, G. Hulot, J. L. Le Mouël, and G. Saracco. Detection of geomagnetic jerks using wavelet analysis. J. Geophys. Res., 100:12557–12572, 1995.Google Scholar
  2. 2.
    S. T. Ali, J. P. Antoine, J. P. Gazeau, and U. A. Mueller. Coherent states and their generalizations: A mathematical overview. Rev. Math. Phys., 7(7):1013–1104, 1995.Google Scholar
  3. 3.
    A. Arneodo, G. Grasseau, and M. Holschneider. On the wavelet transform of multifractals. Phys. Rev. Lett., 61:2281–2284, 1988.Google Scholar
  4. 4.
    J. M. Combes, A. Grossmann, and Ph. Tchamitchiam. Wavelets, Time-Frequency Methods and Phase Space. Springer-Verlag, 1989.Google Scholar
  5. 5.
    St. Dahlke and P. Maass. Wavelet Analysis on the Sphere. Technical report, University of Potsdam, 1995.Google Scholar
  6. 6.
    I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.Google Scholar
  7. 7.
    W. Freeden and U. Windheuser. Wavelet Analysis on the Sphere. Technical report, University of Kaiserslautern, 1995.Google Scholar
  8. 8.
    D. Gibert, M. Holschneider, and J. L. LeMouel. Wavelet Analysis of the Chandler Wobble. Technical report, IPGP (to appear in JGR), 1998.Google Scholar
  9. 9.
    A. Grossmann, M. Holschneider, R. Kronland-Martinet, and J. Morlet. Detection of abrupt changes in sound signals with the help of wavelet transforms. In Advances in Electrononics and Electron Physics, volume 19 of Inverse Problems, pages 289–306. Academic Press, 1987.Google Scholar
  10. 10.
    A. Grossmann and J. Morlet. Decomposition of Hardy functions into square integrable Wavelets of Constant Shape. SIAM J. Math. Anal., 15:723–736, 1984.Google Scholar
  11. 11.
    A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group representations I: general results. J. Math. Phys., 26:2473–2479, 1985.Google Scholar
  12. 12.
    M. Holschneider. On the wavelet transformation of fractal objects. J. Stat. Phys., 50(5/6):953–993, 1988.Google Scholar
  13. 13.
    M. Holschneider. General inversion formulas for wavelet transforms. J. Math. Phys., 34(9):4190–4198, 1993.Google Scholar
  14. 14.
    M. Holschneider. Inverse Radon transfoms through inverse wavelet transforms. Inverse Problems, 7:853–861, 1993.Google Scholar
  15. 15.
    M. Holschneider. Wavelets: An Analysis Tool. Oxford University Press, 1995.Google Scholar
  16. 16.
    M. Holschneider and Ph. Tchamitchian. Pointwise Regularity of Riemanns “nowhere differentiable” function. Inventiones Mathematicae, 105:157–175, 1991.Google Scholar
  17. 17.
    D. Marr. Vision. Freeman and Co., 1982.Google Scholar
  18. 18.
    F. Moreau, D. Gibert, M. Holschneider, and G. Saracco. Wavelet analysis of potential fields. Inverse Problems, 13:165–178, 1997.Google Scholar
  19. 19.
    R. Murenzi. Ondelettes multidimensionelles et application a l'anlyse d'images. These (Louvain la Neuve), 1990.Google Scholar
  20. 20.
    Th. Paul. Functions analytic on the half-plane as quantum mechanical states. J. Math. Phys., 25:3252–3263, 1984.Google Scholar
  21. 21.
    P. Schröder and W. Sweldens. Spherical Wavelets: Texture Processing. Technical report, University of South Carolina, 1995.Google Scholar
  22. 22.
    D. A. Varshalovich, A. N. Moskaler, and V. K. Khersanskii. Quantum Theory of Angular Momentum. World Scientific, 1988.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Matthias Holschneider
    • 1
    • 2
  1. 1.CPT, CNRS LuminyMarseilleFrance
  2. 2.Laboratoire de GéomagnétismeInstitut de Physique du Globe de ParisParisFrance

Personalised recommendations