Skip to main content

Stable isotope geochemistry of sulfate and chloride rocks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 43))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur M.A. (ed.) (1983) Stable isotopes in sedimentary geology. Soc. Expl. Paleont. Miner. Short Course Notes, 10.

    Google Scholar 

  • Bassler R. (1970) Hydrogeologische, chemische und Isotopen-Untersuchungen der Grubenwasser des Ibbenburener Steinkohlenreviers. Zeitschr. Deutsch. Geol. Gesellsch. Sonderheft Hydrogeol. Hydrogeochem., 209–286.

    Google Scholar 

  • Bath A.H., Darling W.G., George, I. A. and Milodowski A.E. (1987) 18O/16O and 2H/1H changes during progressive hydration of a Zechstein anhydrite formation. Geochim. Cosmochim. Acta, 51, 3113–3118.

    Google Scholar 

  • Baud A., Magaritz M. and Holser W.T. (1989) Permian-Triassic of Tethys: Carbon isotope studies. Geol. Rundsch., 78, 649–677.

    Google Scholar 

  • Birnbaum S. J. and Coleman M. (1979) Source of sulphur in the Ebro Basin (Northern Spain) Tertiary nonmarine evaporite deposits as evidenced by sulphur isotopes. Chem. Geol., 25, 163–168.

    Google Scholar 

  • Brookins D.G. (1988) Seawater 87Sr/86Sr for the Late Permian Delaware Basin evaporites (New Mexico, U.S.A.). Chem. Geol., 69, 209–214.

    Google Scholar 

  • Burdett J.W., Arthur M.A. and Richardson M. (1989) A Neogene sea-water sulfur isotope age curve from calcareous pelagic microfossils. Earth Plan. Sci. Lett., 94, 189–198.

    Google Scholar 

  • Chaudhuri S. and Clauer N. (1986) Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic eon. Chem. Geol. (Isot. Geosci. Sect.),. 59, 293–303.

    Google Scholar 

  • Claypool G.E., Holser W.T., Kaplan I.R., Sakai H. and Zak I. (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol., 28, 199–260.

    Google Scholar 

  • Clement G.P. and Holser W.T. (1988) Geochemistry of Moroccan evaporites in the setting of the North Atlantic Rift. Jour. Afr. Earth Sci., 7, 375–383.

    Google Scholar 

  • Cortecci G., Reyes E., Berti G. and Casati P. (1981) Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chem. Geol., 34, 65–79.

    Google Scholar 

  • Elderfield H. (1986) Strontium isotope stratigraphy. Palaeogeogr. Palaeoclimat. Palaeoecol., 57, 71–90.

    Google Scholar 

  • Evans R. and Kirkland D.W. (1988) Evaporitic environments as a source of petroleum. In: Evaporites and Hydrocarbons, Schreiber B.S. (ed.), Columbia University Press, New York, 256–299.

    Google Scholar 

  • Gwynne C.S. (1957) Gypsum at Fort Dodge, Iowa. Earth Sci., 10, 5, p. 18, 20, 22.

    Google Scholar 

  • Halas S. and Krouse H.R. (1982) Isotopic abundances of water of crystallization of gypsum from the Miocene Evaporite Formation, Carpathian Foredeep, Poland. Geochim. Cosmochim. Acta, 46, 293–296.

    Google Scholar 

  • Hardie L.A. (1984) Evaporites: Marine or non-marine? Am. Jour. Sci., 284, 193–240.

    Google Scholar 

  • Hess J., Bender M.L. and Schilling J.G. (1986) Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science, 231, 979–984.

    Google Scholar 

  • Hitchon B. and Krouse H.R. (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada—III. Stable isotopes of oxygen, carbon and sulphur. Geochim. Cosmochim. Acta, 36, 1337–1357.

    Google Scholar 

  • Hoefs J. (1980) Stable Isotope Geochemistry, 2nd ed., Springer-Verlag, Berlin, 208 p.

    Google Scholar 

  • Holland H.D., Lazar B. and McCaffrey M. (1986) Evolution of the atmosphere and oceans. Science, 320, 27–33.

    Google Scholar 

  • Holser W.T. (1979a) Mineralogy of evaporites. Miner. Soc. Am. Rev. Miner., 6, 211–294.

    Google Scholar 

  • Holser W.T. (1979b) Trace elements and isotopes in evaporites. Miner. Soc. Am. Rev. Miner., 6, 295–346.

    Google Scholar 

  • Holser W.T. (1979c) Rotliegend evaporites, Lower Permian of northwestern Europe, geochemical confirmation of the nonmarine origin. Erdöl Kohle Erdgas, 32, 159–162.

    Google Scholar 

  • Holser W.T. (1984) Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Patterns of Change in Earth Evolution, Holland H.D. and Trendall A.F. (eds.), Dahlem Konferenzen, Springer-Verlag, Berlin, 123–142.

    Google Scholar 

  • Holser W.T., Hay W.W., Jory D.E. and O'Connell W.J. (1980) A census of evaporites and its implications for oceanic geochemistry. Geol. Soc. Am., Abstr. with Progr., 12, 449.

    Google Scholar 

  • Holser W.T. and Kaplan I.R. (1966) Isotope geochemistry of sedimentary sulfates. Chem. Geol., 1, 93–135.

    Google Scholar 

  • Holser W.T., Kaplan I.R., Sakai H. and Zak I. (1979) Isotope geochemistry of oxygen in the sedimentary sulfate cycle. Chem. Geol., 25, 1–17.

    Google Scholar 

  • Holser W.T. and Magaritz M. (1985) The Late Permian carbon isotope anomaly in the Bellerophon Basin, Carnic and Dolomite Alps. Jahrb. Geol. Bundesanst., Wien, 128, 75–82.

    Google Scholar 

  • Holser W.T. and Magaritz M. (1987) Events near the Permian Triassic boundary. Mod. Geol., 11, 155–180.

    Google Scholar 

  • Holser W.T., Magaritz M. and Clark D.L. (1986) Carbon-isotope stratigraphic correlations in the Late Permian. Am. Jour. Sci., 286, 390–402.

    Google Scholar 

  • Holser W.T., Magaritz M. and Wright J. (1986) Chemical and isotopic variations in the world ocean during Phanerozoic time. In: Global Bio-Events, Walliser O. (ed.), Springer-Verlag, Berlin, 63–74.

    Google Scholar 

  • Holser W.T., Saltzman E.S. and Brookins D.G. (1984) Geochemistry and petrology of evaporites cored from a deep-sea diapir at Site 546 offshore Morocco. Init. Repts. Deep Sea Drill. Proj., 79, 509–540.

    Google Scholar 

  • Holser W.T., Schidlowski M., Mackenzie F.T. and Maynard J.B. (1988) Geochemical cycles of carbon and sulfur. In: Chemical Cycles in the Evolution of the Earth, Gregor C.B., Garrels R.M., Mackenzie F.T. and Maynard J.B. (eds.), John Wiley and Sons, New York, 105–173.

    Google Scholar 

  • Jenkyns H.C. and Clayton C.J. (1986) Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87–106.

    Google Scholar 

  • Kendall A.C. (1984) Evaporites. In: Facies Models. R.G. Walker (ed.), 2nd ed., Geol. Assoc. of Canada, Toronto, 259–296.

    Google Scholar 

  • Knauth L.P. and Beeunas M.A. (1986) Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochim. Cosmochim. Acta, 50, 419–433.

    Google Scholar 

  • Lerche I. and O'Brien J.J. (eds.) (1987) Dynamical Geology of Salt and Related Structures, Academic Press, Orlando, 832 p.

    Google Scholar 

  • Lord B.K., Jones L.M. and Faure G. (1988) Evidence for the existence of the Gondwana ice sheet in the 18O depletion of carbonate rocks in the Permian formations of the Transantarctic Mountains. Chem. Geol. (Isot. Geosc. Sect.), 72, 163–171.

    Google Scholar 

  • Loutit T.S., Pisias N.G. and Kennett J.P. (1983) Pacific Miocene carbon isotope stratigraphy using benthic foraminifera. Earth Plan. Sci. Lett., 66, 48–62.

    Google Scholar 

  • Magaritz M., Anderson R.Y., Holser W.T., Saltzman E.S. and Garber J. (1983) Isotope shifts in the Late Permian of the Delaware Basin, Texas, precisely timed by varved sediments. Earth Plan. Sci. Lett., 66, 111–124.

    Google Scholar 

  • Magaritz M., Turner P. and Kading K.C. (1981) Carbon isotope change at the base of the upper Permian Zechstein sequence. Geol. Jour., 16, 243–254.

    Google Scholar 

  • McKenzie J.A., Hodell D.A., Mueller P.A. and Mueller D.W. (1988) Application of strontium isotopes to late Miocene-early Pliocene stratigraphy. Geology, 16, 1022–1025.

    Google Scholar 

  • McKibben M.A., Williams A.E. and Okubo S. (1988) Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California: Fluid inclusion evidence. Geochim. Cosmochim Acta, 52, 1047–1056.

    Google Scholar 

  • Michel G. and Nielsen H. (1977) Schwefel-Isotopenuntersuchungen an Sulfaten ostwestfalischer Mineralwasser. Fortschr. Geol. Rheinland Westfal., 26, 185–227.

    Google Scholar 

  • Müller D.W., Mueller P.A. and McKenzie J.A. (1990) Strontium isotope ratios as fluid tracers in Messinian evaporites of the Tyrrhenian Sea (western Mediterranean Sea). Proc. ODP, Sci. Results 107, 603–614.

    Google Scholar 

  • Müller G., Nielsen H. and Ricke W. (1966) Schwefel-Isotopen-Verhältnisse in Formationswassern und Evaporiten Nord-und Suddeutschlands. Chem. Geol., 1, 211–220.

    Google Scholar 

  • Nadler A. and Magaritz M. (1980) Studies of marine solution basins-isotopic and compositional changes during evaporation. In: Hypersaline Brines and Evaporitic Environments, Nissenbaum A. (ed.), Elsevier, Amsterdam, 115–129.

    Google Scholar 

  • Nielsen H. (1967) Sulphur isotopes in the Rhinegraben evaporite sulphates. Abhandl. Geol. Landesamt Baden-Wurttemberg, 6, 27–29.

    Google Scholar 

  • Nielsen H. (1972) Sulphur isotopes and the formation of evaporite deposits. In: Geology of Saline Deposits, Richter-Bernburg G. (ed.), UNESCO, Paris, 91–102.

    Google Scholar 

  • Nielsen H. and Rambow D. (1969) S-Isotopenuntersuchungen an Sulfaten hessischer Mineralwasser. Notizbl. Hess. Landes-Amt Bodenforsch., 97, 352–366.

    Google Scholar 

  • Pak E. and Schauberger O. (1981) Die geologische Datierung der ostalpinen Salzlagerstatten mittels Schwefelisotopenuntersuchungen. Verhandl. Geol. Bundesanst., Wien, 1981, 185–192.

    Google Scholar 

  • Palmer M.R. and Elderfield H. (1985) Sr isotope composition of sea water over the past 75 Myr. Nature, 314, 526–528.

    Google Scholar 

  • Perry E.C.Jr., Grundl T. and Gilkeson R.H. (1982) H, O, S isotopic study of the ground water in the Cambrian-Ordovician aquifer system of northern Illinois. In: Isotope Studies of Hydrologic Processes, Perry E.D. and Montgomery C. (ed.), Northern Illinois University Press, De Kalb, 35–43.

    Google Scholar 

  • Pierre C. (1985) Isotopic evidence for the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salt pans. Chem. Geol., 53, 191–196.

    Google Scholar 

  • Pierre C. (1988) Applications of stable isotope geochemistry to the study of evaporites. In: Evaporites and Hydrocarbons. Schreiber B.C. (ed.), Columbia University Press, New York, 300–344.

    Google Scholar 

  • Pierre C. (1989) Sedimentation and diagenesis in restricted marine basins. In: Handbook of Environmental Isotope Geochemistry, 3, The marine Environment, Fritz P. and Fontes J.C. (eds.), Elsevier Sci. Pub., Amsterdam, 257–315.

    Google Scholar 

  • Pierre C. and Fontes J.C. (1979) Oxygène 18, carbone 13, deutérium et soufre 34: marqueurs géochimiques de la diagenèse et du paléomilieu évaporitiques du Messinien de la Méditerranée. Bull. Mus. Nat. Hist. Nat., Paris, (4), C, 1, 3–18.

    Google Scholar 

  • Pierre C. and Ortlieb L. (1980) Sédimentation et diagenèse dans trois lagunes évaporitiques de Basse Californie (Mexique). Sci. Terre, Nancy, 14, 129–156.

    Google Scholar 

  • Pierre C., Ortlieb L. and Person A. (1984) Supratidal evaporitic dolomite at Ojo de Liebre Lagoon: Mineralogical and isotopic arguments for primary crystallization. Jour. Sediment. Petrol., 54, 1049–1061.

    Google Scholar 

  • Pierre C. and Rouchy J.M. (1988) Carbonate replacements after sulfate evaporites in the Middle Miocene of Egypt. Jour. Sediment. Petrol., 58, 446–456.

    Google Scholar 

  • Popp B.N., Anderson T.F. and Sandberg P.A. (1986) Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. Geol. Soc. Am. Bull., 97, 1262–1269.

    Google Scholar 

  • Popp B.N., Podosek F.A., Brannon J.C., Anderson T.F. and Pier J. (1986) 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells. Geochim. Cosmochim. Acta, 50, 1321–1328.

    Google Scholar 

  • Richardson S.M. and Hansen K.S. (1988) Stable isotopes in the sulfate evaporites from southeastern Iowa: A clue to the history of groundwater? Eos, 69, 1515.

    Google Scholar 

  • Roedder E. (1984) The fluids in salt. Am. Miner., 69, 413–439.

    Google Scholar 

  • Roedder E., d'Angelo W.M., Dorrzapf A.F.Jr. and Aruscavage P.J. (1987) Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A. Chem. Geol., 61, 79–90.

    Google Scholar 

  • Rouchy J.M. and Pierre C. (1979) Données sédimentologiques et isotopiques sur les gypses des séries évaporitiques messiniennes d'Espagne méridionale et de Chypre. Rev. Géol. Dynam. Géog. Phys., 21, 267–280.

    Google Scholar 

  • Schreiber B.C. (edit.) (1988) Evaporites and Hydrocarbons. Columbia University Press, New York, 475 p.

    Google Scholar 

  • Shackelton N.J. (1986) Paleogene stable isotope events. Palaeogeogr. Paleoclimat. Palaeoecol., 57, 91–102.

    Google Scholar 

  • Sofer Z. and Gat J.R. (1975) The isotope composition of evaporating brines: Effect of the isotopic activity ratio in saline solutions. Chem. Geol., 26, 179–186.

    Google Scholar 

  • Spotl C. (1988a) Sedimentologisch-fazielle Analyse tektonisierter Evaporitserien — eine Fallstudie am Beispiel des alpinen Haselgebirges (Permoskyth, nordliche Kalkalpen). Geol. Paläont. Mitt., Innsbruck, 15, 59–69.

    Google Scholar 

  • Spotl C. (1988b) Schwefelisotopendatierungen und fazielle Entwicklung permoskythischer Anhydrite in Salzbergbauen von Durrnberg/Hallein und Hallstatt (Oesterreich). Mitt. Ges. Bergbaustud. Oesterr., 34/35, 209–229.

    Google Scholar 

  • Stein C.L. and Krumhansl J.L. (1988) A model for the evolution of brines in salt from the lower Salado Formation, southeastern New Mexico. Geochim. Cosmochim. Acta, 52, 1037–1046.

    Google Scholar 

  • Veizer J. (1989) Strontium isotopes in seawater through time. Ann. Rev. Earth Plan. Sci., 17, 141–167.

    Google Scholar 

  • Vincent E., Killingley J.S. and Berger W.H. (1985) Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean. Geol. Soc. Am. Mem., 163, 103–130.

    Google Scholar 

  • Wadleigh M.A., Veizer J. and Brooks C. (1985) Strontium and its isotopes in Canadian rivers: Fluxes and global implications. Geochim. Cosmochim. Acta, 49, 1727–1736.

    Google Scholar 

  • Warren J.K. (1989) Evaporite Sedimentology. Prentice-Hall, Englewood Cliffs, New Jersey, 285 p.

    Google Scholar 

  • Williams D.F., Lerche I. and Full W.E. (1988) Isotope Chronostratigraphy: Theory and Methods. Academic Press, San Diego, California, 345 p.

    Google Scholar 

  • Zak I., Sakai H. and Kaplan I.R. (1980) Factors controlling the 18O and 34S isotope ratios of ocean sulfates, evaporites and interstitial sulfates from modern deep sea sediments. In: Isotope Marine Chemistry, Uchida Rokakuho Publ. Co. Ltd., Tokyo, 339–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Norbert Clauer Sambhu Chaudhuri

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Holser, W.T. (1992). Stable isotope geochemistry of sulfate and chloride rocks. In: Clauer, N., Chaudhuri, S. (eds) Isotopic Signatures and Sedimentary Records. Lecture Notes in Earth Sciences, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009864

Download citation

  • DOI: https://doi.org/10.1007/BFb0009864

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55828-6

  • Online ISBN: 978-3-540-47294-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics