Skip to main content

Isotope signatures in phosphate deposits: Formation and diagenetic history

  • Conference paper
  • First Online:
Isotopic Signatures and Sedimentary Records

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 43))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharon P. and Veeh H.H. (1984) Isotope studies of insular phosphates explain atoll phosphatization. Nature, 309, 614–617.

    Google Scholar 

  • Altschuler Z.S. (1980) The geochemistry of trace elements in marine phosphorites. Part I: Characteristic abundances and enrichment, in: Bentor Y.K. (ed.), Soc. Econ. Paleont. Miner., Spec. Pub. 29, 19–30.

    Google Scholar 

  • Altschuler Z.S., Cisney E.A. and Barlow I.H. (1952) X-Ray evidence of the nature of carbonate-apatite. Geol. Soc. Am. Bull., 63, 1230–1231 (Abstract).

    Google Scholar 

  • Altschuler Z.S., Clarke R.S. and Young E.J. (1958): Geochemistry of Uranium in Apatite and Phosphorite. U.S. Geol. Surv., Prof. Paper, 314-D, 45–90.

    Google Scholar 

  • Anderson T.F. and Arthur M.H. (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems In: Stable Isotopes in Sedimentary Geology, Arthur M.A., Anderson T.F., Kaplan I.R., Veizer J. and Land L.S. (eds.), Soc. Econ. Paleont. Mineral., Short Course, 10, 1–151.

    Google Scholar 

  • Arrhenius G., Bramlette M.N. and Picciotto E. (1957) Localization of radioactive and stable heavy nuclides in ocean sediments. Nature, 180, 85–86.

    Google Scholar 

  • Avital Y., Starinsky A. and Kolodny Y. (1983) Uranium geochemistry and fission track mapping of phosphorites, Zefa Field, Israel. Econ. Geol., 78, 121–131.

    Google Scholar 

  • Ayliffe L. K. and Chivas A. R. (1988) Australian Macropods (Kangaroos and Wallabies): Palaeoenvironmental potential of bone phosphate oxygen isotopes. Chem. Geol., 70, 114.

    Google Scholar 

  • Ayliffe L. K. and Chivas A. R. (1990) Oxygen isotope composition of the bone phosphate of Australian kangaroos: Potential as a palaeoenvironmental recorder. Geochim Cosmochim. Acta, 54, 2603–2610.

    Google Scholar 

  • Ayliffe L. K. and Chivas A. R. (1991) Phosphate oxygen — isotope constraints on the origin of island phosphate deposits. Earth Plan. Sci. Lett. (in press)

    Google Scholar 

  • Ayliffe L. K. and Veeh H H. (1988) Uranium — Series dating of speleothems and bones from Victoria Cave, Naracoorte, South Australia. Chem. Geol., 72, 211–234.

    Google Scholar 

  • Bacquet G., Vo Quang T., Bonel G. and Vignoles M. (1980) Résonance paramagnétique du centre F dans les fluorapatites carbonatées de type B. J. Solid State Chem., 33, 189–195.

    Google Scholar 

  • Baturin G.N. (1969) Authigenic phosphate concretions in recent sediments of the South West African shelf. Dokl. Akad. Nauk SSSR, 189, 1359–1362 (English Translation, pp. 227–230).

    Google Scholar 

  • Baturin G.N. (1971a) Stages of phosphorite formation on the ocean floor. Nature, 232, 61–62.

    Google Scholar 

  • Baturin G.N. (1971b) Formation of phosphate sediments and water dynamics. Oceanology, 11, 373–376.

    Google Scholar 

  • Baturin G.N. (1982) Phosphorites on the sea floor: origin, composition and distribution. Developments in Sedimentology, 33, Elsevier, Amsterdam, 343 pp.

    Google Scholar 

  • Baturin G.N., Merkulova K.I. and Chalov P.I. (1972) Radiometric evidence for recent formation of phosphatic nodules in marine shelf sediments. Mar. Geol., 13, M37–M41.

    Google Scholar 

  • Bell R.T. and Thorphe R.I. (1986) Pb-Pb isochron age of uraniferous phosphorite at the base of the Menihek Formation, Labrador Trough, in: Current Research, B, Geol. Surv. Canada, 86-1B, 585–589.

    Google Scholar 

  • Benmore R.A., Coleman M.L. and McArthur J.M. (1983) Origin of sedimentary francolite from its sulphur and carbon isotope composition. Nature, 302, 516–518.

    Google Scholar 

  • Bentor Y.K. (ed.) (1980) Phosphorites — the unsolved problems. Soc. Econ. Paleont. Miner., Spec. Publ., 29, 3–18.

    Google Scholar 

  • Bernat M. (1975) Les isotopes de l'uranium et du thorium et les terres rares dans l'environnement marin. Cah. ORSTOM, Sér. Géol., 7, 68–83.

    Google Scholar 

  • Berzina I.G., Drushchits A.V., Karpova M.I., Maksimova I.G., Mel'nikov E.V. and Ozol A.A. (1978) Boron and Uranium distribution in concretionary phosphorites of the Aktyubinsk basin. Dok. Akad. Nauk, SSSR, 242, 159–161.

    Google Scholar 

  • Birch G.F., Thomson J., McArthur J.M. and Burnett W.C. (1983) Pleistocene phosphorites off the west coast of South Africa. Nature, 302, 601–603.

    Google Scholar 

  • Bliskovskiy V.Z., Grinenko V.A., Migdisov L.I. and Savina L.I. (1977) Sulfur isotopic composition of the minerals of phosphorites. Geochem. Int., 14, 148–155.

    Google Scholar 

  • Borneman-Starynkevitch I.D. and Belov N.V. (1940) Isomorphic substitutions in carbonate-apatite. Dokl. Acad. Nauk, USSR, 26, 804–806.

    Google Scholar 

  • Boyer P.D., deMeis L., Carvalho M.G.C. and Hackney D.D. (1977) Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalyzed by sacroplasmic reticulum Adenosine Triphosphase. Biochem., 16, 136–140.

    Google Scholar 

  • Broecker W.S. (1974) Chemical Oceanography. Harcourt Brace Jovanovich, New York, 214 pp.

    Google Scholar 

  • Brongersma-Sanders M. (1957) Mass mortality in the sea. In: Treatise on Marine Ecology and Paleoecology, Hegpeth J.W. (ed.), 1, Ecology, Geol. Soc. Am. Mem., 67, 941–1010.

    Google Scholar 

  • Burke W.H., Denison R.E., Hetherington E.A., Koepnick R.B., Nelson H.F. and Otto J.B. (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.

    Google Scholar 

  • Burnett W.C. and Veeh H.H. (1977) Uranium-series disequilibrium studies in phosphorite nodules from the west coast of South America. Geochim. Cosmochim. Acta, 41, 755–764.

    Google Scholar 

  • Burnett W.C., Beers M.J. and Roe K.K. (1982) Growth rates of phosphate nodules from the continental margin off Peru. Science, 215, 1615–1618.

    Google Scholar 

  • Burnett W.C., Roe K.K. and Piper D.Z. (1983) Upwelling and phosphorite formation in the ocean. In: Coastal Upwelling — its Sedimentary Record, Part A: Responses of the Sedimentation Regime to Present Coastal Upwelling, Suess E. and Thiede J. (eds.), Plenum, New York, 377–397.

    Google Scholar 

  • Burnett W.C. and Froelich P.N. (1988) Preface. In: The Origin of Marine Phosphorite. The Results of the R.V. Robert D. Conrad Cruise 23-06 to the Peru Shelf, Burnett W.C. and Froelicher P.N. (eds.), Mar. Geol., 80, III–VI.

    Google Scholar 

  • Burnett W.C., Baker B., Chin P., McCabe W. and Ditchburn R. (1988) Uranium-series and AMS 14C studies of modern phosphatic pellets from Peru shelf muds. In: The Origin of Marine Phosphorite. The Results of the R.V. Robert D. Conrad Cruise 23-06 to the Peru Shelf, Burnett W.C. and Froelich P.N. (eds.), Mar. Geol., 80, 215–230.

    Google Scholar 

  • Chalov P.I. and Merkulova K.I. (1966) Comparative rate of oxidation of 234U and 238U atoms in certain minerals. Dokl. Akad. Nauk SSR, 167, 146–148.

    Google Scholar 

  • Chase C.G. and Perry E.C. (1972) The Oceans: Growth and oxygen isotope evolution. Science, 177, 992–994.

    Google Scholar 

  • Chen J.H., Edwards L.R. and Wasserburg G.J. (1986) 238U, 234U 232Th in seawater. Earth Plan. Sci. Lett., 80, 241–251.

    Google Scholar 

  • Clayton R.N., O'Neil J.R. and Mayeda T.K. (1972) Oxygen isotope exchange between quartz and water. Jour. Geophys. Res., 77, 3907–3915.

    Google Scholar 

  • Compton J. S., Snyder S. W. and Hodell D. A. (1990) Phosphogenesis and weathering of shelf sediments from the southeastern United States: Implications for Miocene δ13C excursions and global cooling. Geology, 18, 1227–1230.

    Google Scholar 

  • Cook P.J. (1976) Sedimentary Phosphate Deposits. In: Handbook of Strata-Bound and Stratiform Ore Deposits, Wolf K.H. (ed.), 7, Elsevier, Amsterdam, 505–535.

    Google Scholar 

  • Cook P.J. and McElhinny M.W. (1979) A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ. Geol., 74, 315–330.

    Google Scholar 

  • Crowson R.A., Showers W.J., Wright E.K. and Hoering T.C. (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal. Chem., 63, 2397–2400.

    Google Scholar 

  • D'Angela D. and Longinelli A. (1990) Oxygen isotopes in living mammal's bone phosphate: Further results. Chem. Geol., 86, 75–82.

    Google Scholar 

  • Dansgaard W. (1964) Stable isotopes in precipitation. Tellus, 16, 436–468.

    Google Scholar 

  • Degens E.T. and Epstein S. (1962) Relationship between 18O/16O ratios in coexisting carbonates, cherts and diatomites. Amer. Ass. Petrol. Geol. Bull., 166, 534–542.

    Google Scholar 

  • Douglas R.G. and Woodruff F. (1981) Deep sea benthic foraminifera. In: The Sea, Emiliani C. (ed.), 7, Interscience-Wiley, New York, N.Y., 1233–1327.

    Google Scholar 

  • Edwards L. R., Chen J.H., Ku T.-L. and Wasserburg G.J. (1987) Precise timing of the last interglacial period from mass spectrometric determination of Thorium-230 in corals. Science, 236, 1547–1553.

    Google Scholar 

  • Elderfields H. and Gieskes J.M. (1982) Sr isotopes in interstitial waters of marine sediments from Deep Sea Drilling Project cores. Nature, 300, 493–497.

    Google Scholar 

  • Epstein S., Buchsbaum H.A., Lowenstam H.A. and Urey H.C. (1953) Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull., 64, 1315–1326.

    Google Scholar 

  • Epstein S. and Karhu J. (1990) A reply to E. C. Perry's comments. Geochim. Cosmochim. Acta, 54, 1181–1184.

    Google Scholar 

  • Faure G. (1986) Principles of Isotope Geology. 2nd edition, John Wiley & Sons, 589 pp.

    Google Scholar 

  • Froelich P.N., Klinkhammer G.P., Bender M.L., Luetke N.A., Heath G.R., Cullen D., Dauphin P., Hammond D., Hartman B. and Mynard V. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43, 1075–1090.

    Google Scholar 

  • Froelich P.N., Arthur M., Burnett W.C., Deakin M., Hensley V., Jahnke R., Kaul L., Kim K., Roe K., Soutar A. and Vathakanon C. (1988) Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation. In: The Origin of Marine Phosphorite. The Results of the R.V. Robert D. Conrad Cruise 23-06 to the Peru Shelf, Burnett W.C. and Froelich P.N. (eds.), Mar. Geol., 80, 309–343.

    Google Scholar 

  • Garavelli C.L., Melone N. and Nuovo G. (1979) Presence of whitlockite in the mineral substance of annealed fish-bones: character and possible significance. Oceanol. Acta, 2(4), 417–421.

    Google Scholar 

  • Garrison R.E. Kastner M., and Reimers C.E. (1990) Miocene phosphogenesis in California. In: Phosphate Deposits of the world, vol.3. Neogene to Modern Phosphorites, Burnett W.C. and Riggs S.R. (eds.), Cambridge University Press, 285–299.

    Google Scholar 

  • Garrison R.E., Kastner M. and Kolodny Y. (1987) Phosphorites and phosphatic rocks in the Monterey Formation and related Miocene units, Coastal California, in: Cenozoic Basin Development of Coastal California, Ingersol R.V. and Ernst W.G. (eds.), Rubey, VI, Prentice-Hall, 349–381.

    Google Scholar 

  • Glenn C.R., (1988) Pore water, petrologic and stable carbon isotopic data bearing on the origin of Modern Peru margin phosphorites and associated authigenic phases. In: Phosphate Deposits of the world, vol.3. Neogene to Modern Phosphorites, Burnett W.C. and Riggs S.R. (eds.), Cambridge University Press,.46–61.

    Google Scholar 

  • Glenn C.R., Arthur M.A., Yeh H.W. and Burnett W.C. (1988) Carbon isotopic composition and lattice-bound carbonate of Peru-Chile margin phosphorites. In: The Origin of Marine Phosphorite. The Results of the R.V. Robert D. Conrad Cruise 23-06 to the Peru Shelf, Burnett W.C. and Froelich P.N. (eds.), Mar. Geol., 80, 287–307.

    Google Scholar 

  • Glenn C.R. and Arthur M.A. (1990) Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt. Sedimentology, 37, 123–154.

    Google Scholar 

  • Goldhaber M.B. and Kaplan R. (1974) The sulfur cycle. In: The Sea, 5, Marine Chemistry, Goldberg E.D. (ed.), Wiley-Interscience Publishers, New York, 569–655.

    Google Scholar 

  • Grandjean P. and Albarède F. (1989) Ion probe measurements of rare earth elements in biogenic phosphates. Geochim. Cosmochim. Acta, 53, 3179–3183.

    Google Scholar 

  • Grandjean P., Cappetta H., Michard A. and Albarède F. (1987) The assessment of REE patterns and 143Nd/144Nd ratios in fish remains. Earth Plan. Sci. Lett., 84, 181–196.

    Google Scholar 

  • Grandjean P., Cappetta H., Albarède F. (1988) The REE and eNd of 40–70 Ma old fish debris from the West-African platform. Geophys. Res. Lett., 15, 389–392.

    Google Scholar 

  • Gulbrandsen R.A. (1969): Physical and chemical factors in the formation of marine apatite. Econ. Geol., 64, 365–382.

    Google Scholar 

  • Gulbrandsen R.A. (1970) Relation of Carbon Dioxide Content of Apatite of the Phosphoria Formation to Regional Facies. U.S. Geol. Surv. Prof. Paper, 700-B, B9-13.

    Google Scholar 

  • Holser W.T. and Kaplan I.R. (1966) Isotope geochemistry of sedimentary sulfates. Chem. Geol., 1, 93–135.

    Google Scholar 

  • Holland H.D. (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, N.Y., 582 pp.

    Google Scholar 

  • Irwin H., Curtis C. and Coleman M. (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments. Nature, 269, 209–213.

    Google Scholar 

  • Jahnke R.A. (1984) The synthesis and solubility of carbonate fluorapatite. Amer. Jour. Sci., 284, 58–78.

    Google Scholar 

  • Jones E. J. W. (1989) Radioactivity of the ocean floor and marine phosphorite deposits: observations with a new deep-towed scintillometer. Geophys. Res. Lett., 16, 123–126.

    Google Scholar 

  • Karhu J. and Epstein S. (1986) The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochim. Cosmochim. Acta, 50, 1745–1757.

    Google Scholar 

  • Kastner M., Garrison R.E., Kolodny Y., Shemesh A. and Reimers C.E. (1990) Simultaneous changes of oxygen isotopes in PO −34 and CO −23 in apatite, with emphasis on the Monterey Formation California. In: Phosphate Deposits of the world, vol. 3. Neogene to Modern Phosphorites, Burnett W.C. and Riggs S.R. (eds.), Cambridge University Press, 312–324.

    Google Scholar 

  • Kazakov A.V. (1937) The phosphorite facies and the genesis of phosphorites. In: Geological Investigations of Agricultural Ores. Trans. Sci. Inst. Fertil. Insecto-fungicides, 142, 93–113.

    Google Scholar 

  • Keppens E. and O'Neil J.R. (1984) Oxygen isotope variations in glauconies. Terra cognita, 5, 283.

    Google Scholar 

  • Keto L.S. and Jacobsen S.B. (1987) Nd and Sr isotopic variations of Early Paleozoic oceans. Earth Plan. Sci. Lett., 84, 27–41.

    Google Scholar 

  • Keto L.S. and Jacobsen S.B. (1987) Nd isotopic variations of Phanerozoic oceans. Earth Plan. Sci. Lett., 90, 395–410.

    Google Scholar 

  • Kim K.H. and Burnett, W.C. (1986) Uranium-series growth history of a Quaternary phosphatic crust from the Peruvian continental margin. Chem. Geol., 58, 227–244.

    Google Scholar 

  • Knauth L.P. and Epstein S. (1976) Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta, 40, 1095–1108.

    Google Scholar 

  • Koch P. L., Fisher D. C. and Dettman D. (1989) Oxygen isotope variation in the tusk of extinct proboscideans: A measure of season of death and seasonality. Geology, 17, 515–519.

    Google Scholar 

  • Kolodny Y. (1980) Carbon isotopes and depositional environment of a high productivity sedimentary sequence — the case of the Mishash-Ghareb formation, Israel. Isr. Jour. Earth Sci., 29, 147–156.

    Google Scholar 

  • Kolodny Y. (1981) Phosphorites. In: The Sea, 7, Emiliani C. (ed.), J. Wiley & Sons, New York, 981–1023.

    Google Scholar 

  • Kolodny Y. and Kaplan I.R. (1970a) Uranium isotopes in sea floor phosphorites. Geochim. Cosmochim. Acta, 34, 3–24.

    Google Scholar 

  • Kolodny Y. and Kaplan I.R. (1970b) Carbon and oxygen isotopes in apatite CO2 and coexisting calcite from sedimentary phosphorite. Jour. Sedim. Petrol., 40, 954–959.

    Google Scholar 

  • Kolodny Y. and Luz B. (1992) Oxygen isotopes in phosphates of fossil fish — Devonian to Recent. In: Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Taylor H.P., O'Neil J.R. and Kaplan I.R. (eds.), The Geochem. Soc., Spec. Public., 3, 105–119.

    Google Scholar 

  • Kolodny Y., Luz B. and Navon O. (1983) Oxygen isotope variations in phosphate of biogenic apatite. I: Fish bone apatite — rechecking the rules of the game. Earth Plan. Sci. Lett., 64, 398–404.

    Google Scholar 

  • Kolodny Y. and Raab M. (1988) Oxygen isotopes in phosphatic fish remains from Israel: Paleothermometry of tropical Cretaceous and Tertiary shelf waters. Palaeogeogr., Palaeoclimatol., Palaeoecol., 64, 59–67.

    Google Scholar 

  • Kovach J. (1980) Variations in the Strontium isotopic composition of seawater during Paleozoic time determined by analysis of conodonts. Geol. Soc. Amer., Abst. with Progr., 12 (7), 465.

    Google Scholar 

  • Kovach J. and Zartman R.E. (1981) U-Th-Pb dating of conodonts. Geol. Soc. Amer., Abst. with Progr., 13 (6), 285.

    Google Scholar 

  • Kovach J. and Miller J.F. (1988) Eustatic sea-level changes near the Cambrian-Ordovician boundary: Data from Sr isotope analysis of biogenic apatites. Geol. Soc. Amer., Abstracts with Programs, 20, A393.

    Google Scholar 

  • Kozlov A.A. (1975) On the distribution of Uranium in the phosphorites of the Russian Platform. Geochem. Intern., 136–138.

    Google Scholar 

  • Kress A.G. and Veeh H.H. (1980) Geochemistry and radiometric ages of phosphatic nodules from the continental margin of northern New South Wales, Australia. Mar. Geol., 36, 143–157.

    Google Scholar 

  • Koepnick R.B., Burke W.H., Denison R.E., Hetherington E.A., Nelson H.F., Otto J.B. and Waite L.E. (1985) Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data. Chem. Geol., 58, 55–81.

    Google Scholar 

  • Land L.S., Lundelius E. L., Jr. and Valastro S., Jr. (1980) Isotopic ecology of deer bones. Palaeogeogr., Palaeoclimatol., Palaeoecol., 32, 143–151.

    Google Scholar 

  • Levinson A.A., Luz B. and Kolodny Y. (1987) Variations in oxygen isotopic compositions of human teeth and urinary stones. Applied Geochem., 2, 367–371.

    Google Scholar 

  • Lifson N. & McClintock R. (1966) Theory of use of the turnover rates of body water for measuring energy and material balance. Jour. Theoret. Biol., 12, 46–74.

    Google Scholar 

  • Longinelli A. (1965) Oxygen isotopic composition of orthophosphate from shells of living marine organisms. Nature, 207, 716–719.

    Google Scholar 

  • Longinelli A. (1984) Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta, 48, 385–390.

    Google Scholar 

  • Longinelli A. and Nuti S. (1968) Oxygen isotopic composition of phosphorites from marine formations. Earth Plan. Sci. Lett., 5, 13–16.

    Google Scholar 

  • Longinelli A. and Nuti S. (1973a) Revised phosphate-water isotopic temperature scale. Earth Plan. Sci. Lett., 19, 373–376.

    Google Scholar 

  • Longinelli A. and Nuti S. (1973b) Oxygen isotope measurements of phosphate from fish teeth and bones. Earth Plan. Sci. Lett., 20, 337–340.

    Google Scholar 

  • Lowenstam H.A. (1964) Paleotemperatures of the Permian and Cretaceous Periods. In: Problems in Paleoclimatology, Nairn A.E.M. (ed.), Wiley Interscience, New York, N.Y., 227–248.

    Google Scholar 

  • Lucas J. and Prévôt L. (1985) The synthesis of apatite by bacterial activity: mechanism. Sci. Géol. Mém., 77, 83–92.

    Google Scholar 

  • Luz B., Cormie A. B. and Schwarcz H. P. (1990) Oxygen isotope variation in phosphate of deer bones. Geochim. Cosmochim. Acta, 54, 1723–1728.

    Google Scholar 

  • Luz B., Kolodny Y. and Kovach J. (1984) Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth Plan. Sci. Lett., 69, 255–262.

    Google Scholar 

  • Luz B., Kolodny Y. and Horowitz M. (1984) Fractionation of oxygen isotopes between mammalian bone phosphate and environmental drinking water. Geochim. Cosmochim. Acta, 48, 1689–1693.

    Google Scholar 

  • Luz B. and Kolodny Y. (1985) Oxygen isotope variation in phosphate of biogenic apatites. IV. Mammal teeth and bones. Earth Plan. Sci. Lett., 75, 29–36.

    Google Scholar 

  • Luz B. and Kolodny Y. (1989) Oxygen isotope variation in bone phosphate. Applied Geochem., 4, 317–323.

    Google Scholar 

  • McArthur J.M. (1978) Systematic variations in the contents of Na, Sr, CO3 and SO4 in marine carbonate-fluorapatite and their relation to weathering. Chem. Geol., 21, 89–112.

    Google Scholar 

  • McArthur J.M. (1985) Francolite geochemistry — compositional controls during formation, diagenesis, metamorphism and weathering. Geochim. Cosmochim. Acta, 49, 23–35.

    Google Scholar 

  • McArthur J.M., Coleman M.L. and Bremner J.M. (1980) Carbon and oxygen isotopic composition of structural carbonate in sedimentary francolite. Jour. Geol. Soc. London, 137, 669–673.

    Google Scholar 

  • McArthur J.M., Benmore R.A., Coleman M.L., Soldi C., Yeh H. W. and O'Brien G.W. (1986) Stable isotopic characterisation of francolite formation. Earth Plan. Sci. Lett., 77, 20–34.

    Google Scholar 

  • McArthur J.M., Hamilton P.J., Greensmith J.T., Boyce A.J., Fallick A.E., Birch G., Walsh J.N., Benmore R.A. and Coleman M.L. (1987) Phosphorite geochemistry: Isotopic evidence for meteoric alteration of francolite on a local scale. Chem. Geol., 65, 415–425.

    Google Scholar 

  • McArthur J.M., Sahami A. R., Thirlwall M., Hamilton P.J. and Osborn A.O. (1990) Dating phosphogenesis with strontium isotopes. Geochim. Cosmochim. Acta, 54, 1343–1351.

    Google Scholar 

  • McArthur J.M., Thomson J., Jarvis I., Fallick A.E. and Birch G.F. (1988) Eocene to Pleistocene Phosphogenesis off western South Africa. Mar. Geol., 85, 41–63.

    Google Scholar 

  • McClellan G.H. (1980) Mineralogy of carbonate fluorapatites. Jour. Geol. Soc. London, 137, 675–681.

    Google Scholar 

  • McClellan G.H. and Lehr J.R. (1969) Crystal chemical investigation of natural apatites. Am. Min., 54, 1374–1391.

    Google Scholar 

  • McClellan G.H. and Saavedra F.N. (1986) Chemical and mineral characteristics of some Cambrian and Precambrian phosphorites. In: Phosphate Deposits of the World, 1, Proterozoic and Cambrian Phosphorites, Cook P.J. and Shergold J.H. (eds.), Cambridge Univ. Press, 244–267.

    Google Scholar 

  • McConnell D. (1973) Apatite. Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences. Springer-Verlag, New York, 111 p.

    Google Scholar 

  • McCrea J.N. (1950) On the isotopic chemistry of carbonate and paleotemperature scale. Jour. Chem. Phys., 18, 849–857.

    Google Scholar 

  • McKelvey V.E. (1967) Phosphate Deposits. U.S. Geol. Surv. Bull., 1252-D, 1–21.

    Google Scholar 

  • McKelvey V.E., Swanson R.W. and Sheldon R.P. (1953) The Permian phosphorite deposits of Western United States. In: Congr. Geol. Int. Compt. Rend., 19th, Algiers, 1952, XI(II), 45–64.

    Google Scholar 

  • Nathan Y. (1984): The mineralogy and geochemistry of phosphorites. In: Phosphate Minerals, Nriagu J.O. and Moore P.B. (eds), Springer Verlag, Berlin, 275–291.

    Google Scholar 

  • Nathan Y. and Nielsen H. (1980) Sulfur isotopes in phosphorites. In: Marine Phosphorites, Bentor Y.K. (ed.), Soc. Econ. Paleont. Miner., Spec. Publ., 29, 73–78.

    Google Scholar 

  • Nelson B.K., Deniro M.J., Schoeninger M.J. and De Paolo D.J. (1986) Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim. Cosmochim. Acta, 50, 1941–1949.

    Google Scholar 

  • O'Brien G.W. and Veeh H.H. (1980) Holocene phosphorite on the east Australian continental margin. Nature, 288, 690–692.

    Google Scholar 

  • O'Brien G.W., Veeh H.H, Cullen D.J. and Milnes A.R. (1986) Uranium-series isotopic studies of marine phosphorites and associated sediments from the East Australian continental margin. Earth Plan. Sci. Lett., 80, 19–35.

    Google Scholar 

  • O'Brien G.W., Veeh H.H., Milnes A.R. and Cullen D.J. (1987) Seafloor weathering of phosphate nodules off East Australia: Its effect on uranium oxidation state and isotopic composition. Geochim. Cosmochim. Acta, 51, 2051–2064.

    Google Scholar 

  • O'Neil J.R., Clayton R.N. and Mayeda T.K. (1969) Oxygen isotope fractionation in divalent metal carbonates. Jour. Chem. Phys., 51, 5547–5558.

    Google Scholar 

  • Parrish J.T. (1982) Upwelling and petroleum source beds, with reference to Paleozoic. Amer. Ass. Petrol. Geol. Bull., 66, 750–774.

    Google Scholar 

  • Parrish J.T., Ziegler A.M. and Scotese C.R. (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr, Palaeoclimatol., Palaeoecol., 40, 67–101.

    Google Scholar 

  • Penrose R.A.F. Jr. (1888) Nature and origin of deposits of phosphate of lime, with an introduction by N.S. Shaler. U.S. Geol. Surv. Bull., 46, 143 p.

    Google Scholar 

  • Perry Jr. E.C. (1990) Comment on "The implication of the oxygen isotope record in coexisting cherts and phosphates" by J. Karhu and S. Epstein. Geochim. Cosmochim. Acta, 54, 1175–1179.

    Google Scholar 

  • Peterman Z.E., Hedge C.E. and Tourtelot H.A. (1970) Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochim. Cosmochim. Acta, 34, 105–120.

    Google Scholar 

  • Piepgras D.J., Wasserburg G.J. & Dasch E.J. (1979) The isotopic variations in seawater. Earth Plan. Sci. Lett., 45, 223–236.

    Google Scholar 

  • Piper D.Z and Kolodny Y. (1987) The stable isotopic composition of a phosphate deposit: δ13C, δ34S and δ18O. Deep Sea Res., 34, 897–911.

    Google Scholar 

  • Price N.B. and Calvert S.E. (1978) The geochemistry of phosphorites from the Namibian shelf. Chem. Geol., 23, 151–170.

    Google Scholar 

  • Riggs S.R. (1984) Paleoceanographic model of Neogene phosphorite deposition, U.S. Atlantic continental margin. Science, 223, 123–131.

    Google Scholar 

  • Roe K.K., Burnett W.C., Kim K.H. and Beers M.J. (1982) Excess protactinium in phosphate nodules from a coastal upwelling zone. Earth Plan. Sci. Lett., 60, 39–46.

    Google Scholar 

  • Romankevich Ye.A. and Baturin G.N. (1972) Composition of the organic matter in phosphorites from the continental shelf of southwest Africa. Geokhimia, 719–726 (Engl. Transl., 464–470).

    Google Scholar 

  • Savin S.M. (1977) The history of the earth's surface temperature during the past 100 million years. Annu. Rev. Earth Plan. Sci., 5, 319–355.

    Google Scholar 

  • Schmitz B., Ã…berg G., Werdelin L., Forey P. and Svend E.B.A. (1991) 87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats. Geol. Soc. Am. Bull., 103, 786–794.

    Google Scholar 

  • Shaw H.F. and Wasserburg G.J. (1985) Sm-Nd in marine carbonates and phosphorites: Implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta, 49, 503–518.

    Google Scholar 

  • Sheldon R.P. (1980) Ancient Marine Phosphorites. Ann. Rev. Earth and Plan. Sci., 9, 251–284.

    Google Scholar 

  • Sheldon R.P. (1964) Paleolatitudinal and Paleogeographic Distribution of Phosphorite. U.S. Geol. Surv. Prof. Pap., 501-C, 106–113.

    Google Scholar 

  • Shemesh A. (1990) Crystallinity and diagenesis of sedimentary apatites. Geochim. Cosmochim. Acta, 54, 2433–2438.

    Google Scholar 

  • Shemesh A., Kolodny Y. and Luz B. (1983) Oxygen isotope variations in phosphate of biogenic apatites. II. Phosphorite rocks. Earth Plan. Sci. Lett., 64, 405–416.

    Google Scholar 

  • Shemesh A., Kolodny Y. and Luz B. (1988) Isotope geochemistry of oxygen and carbon in phosphate and carbonate of phosphorite francolite. Geochim. Cosmochim. Acta, 52, 2565–2572.

    Google Scholar 

  • Shemesh A. and Kolodny Y. (1988) Oxygen isotope variations in phosphorites from the southeastern Tethys. Isr. Jour. Earth Sci., 37, 1–15.

    Google Scholar 

  • Soudry D. (1987) Ultra-fine structures and genesis of the Campanian Negev high-grade phosphorites (southern Israel). Sedimentology, 34, 641–660.

    Google Scholar 

  • Soudry D. and Champetier Y. (1983) Microbial processes in the Negev phosphorites (southern Israel). Sedimentolology, 30, 411–423.

    Google Scholar 

  • Staudigel H., Doyle P. and Zindler A. (1985/86 Sr and Nd isotope systematics in fish teeth. Earth Plan. Sci. Lett., 76, 45–56.

    Google Scholar 

  • Stein M., Starinsky A. and Kolodny Y. (1982) Behaviour of uranium during phosphate ore calcination. Jour. Chem. Tech. Biotechnol., 32, 834–847.

    Google Scholar 

  • Strakhov N.M. (1970) Principles of Lithogenesis, 3, Plenum, 577 p.

    Google Scholar 

  • Strutt R.J. (1908): The accumulation of helium in geological time. Roy. Soc. London, Proc., A81, 272–277.

    Google Scholar 

  • Tudge A.P. (1960) A method of analysis of oxygen isotopes of orthophosphates: its use in the measurement of paleotemperatures. Geochim. Cosmochim. Acta, 18, 81–93.

    Google Scholar 

  • Tugarinov A.I., Zykov S.I. and Bibikova E.V. (1963) Determination of the age of sedimentary rocks by the lead-uranium method. Geochem., 3, 284–300.

    Google Scholar 

  • Turner D.R. and Whitfield M. (1979) Control of seawater composition. Nature, 281, 468–469.

    Google Scholar 

  • Urey H.C., Lowenstam H.A., Epstein S. and McKinney U. (1951) Measurements of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the south-eastern U.S. Geol. Soc. Am. Bull., 62, 399–416.

    Google Scholar 

  • Vaasjoki M., Aikas O. and Rehtijarvi P. (1980) The age of mid-Proterozoic phosphatic metasediments in Finland as indicated by radiometric U-Pb dates. Lithos, 13, 257–262.

    Google Scholar 

  • Veeh. H.H; (1982) Concordant 230Th and 231Pa ages of marine phosphorites. Earth Plan. Sci. Lett., 57: 278–284.

    Google Scholar 

  • Veeh H.H., Burnett W.C. and Soutar A. (1973) Contemporary phosphorites on the continental margin of Peru. Science, 181, 844–845.

    Google Scholar 

  • Veeh H.H., Calvert S.E. and Price N.B. (1974) Accumulation of uranium in sediments and phosphorites on the South West African shelf. Mar. Chem., 2, 189–202.

    Google Scholar 

  • Veeh H.H. and Burnett W.C. (1978) Uranium-series dating of insular phosphorite from Ebon atoll, Micronesia. Nature, 274, 460–462.

    Google Scholar 

  • Veeh H.H. and Burnett W.C. (1982) Carbonate and phosphate sediments. In: Uranium-Series Disequilibrium: Application To Environmental Problems, Ivanovich M. and Harmon R.S. (eds), Clarendon Press, Oxford, 459–480.

    Google Scholar 

  • Veizer J., Fritz P. and Jones B. (1986) Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans. Geochim. Cosmochim. Acta, 50: 1679–1696.

    Google Scholar 

  • Vengosh A., Kolodny Y. and Tepperberg M. (1987) Multi-phase oxygen isotopic analysis as a tracer of diagenesis: The example of the Mishash Formation, Cretaceous of Israel. Chem. Geol., 65, 235–253.

    Google Scholar 

  • Waples D.W. (1982) Phosphate-rich sedimentary rocks: Significance for organic facies and petroleum exploration. Journ. Geochem. Explor., 16, 135–160.

    Google Scholar 

  • Williams L.A. and Reimers C. (1983) Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report. Geology, 11, 267–269.

    Google Scholar 

  • Wright J., Seymour R.S. and Shaw H.F. (1984) REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Geol. Soc. Am., Spec. Pap., 196, 325–340.

    Google Scholar 

  • Yurtsever Y. and Gat J.R. (1981) Atmospheric waters. In: Stable Isotope Hydrology, Chap. 6, Gat J.R. and Gonfiantini R. (ed.), Tech. Report Series, Inter. Atomic Energy Agency, Vienna 210, 103–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Norbert Clauer Sambhu Chaudhuri

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Kolodny, Y., Luz, B. (1992). Isotope signatures in phosphate deposits: Formation and diagenetic history. In: Clauer, N., Chaudhuri, S. (eds) Isotopic Signatures and Sedimentary Records. Lecture Notes in Earth Sciences, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009862

Download citation

  • DOI: https://doi.org/10.1007/BFb0009862

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55828-6

  • Online ISBN: 978-3-540-47294-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics