Advertisement

Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes

Conference paper
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 40)

Abstract

In industrial bioreactors, levels and gradients of total and partial pressures are considerably higher than on the laboratory scale. In the relevant range (in general up to 2 or 3 bar, maximum approx. 10 bar), effects of total pressure on aerobic cultures are neglegibly small. CO2 partial pressures of more than approx. 100 mbar may have inhibitory effects on aerobic cultures. Growth of aerobic cultures can be enhanced by O2 partial pressures higher than 210 mbar (corresponding to air at 1 bar), if oxygen transfer is limited. In many cases, however, increased O2 partial pressure (higher than approx. 1 bar) is toxic to aerobic cultures and inhibits microbial growth and product formation. Stepwise and cyclic variations of O2 partial pressure may have positive or negative effects, depending on strain of microorganism, culturing conditions, and range of dissolved oxygen concentration.

Knowledge of these effects is required in process development and bioreactor scale-up.

Keywords

Partial Pressure Total Pressure Oxygen Partial Pressure Dissolve Oxygen Concentration Dissolve Oxygen Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols

Symbol

Dimension

c

kmol m−3, gl−1 concentration

D

h−1 dilution rate

DOT

mbar dissolved oxygen tension

f

bar fugacity

I

kmol m−3 ionic strength

K

equilibrium constant

k

rate constant

N

ml−1 number of cells per volume

P

bar total pressure

p

mbar partial pressure

r

10−3 kmol m−3 h−1 rate of reaction

RQ

- respiration coefficient

T

‡C temperature

X

g l−1 cell mass concentration

y

- molar fraction in gas phase

Y

- yield coefficient

Μ

h−1 specific growth rate

v

h−1 reproduction rate

i

component i

max

maximum

P

product

S

substrate

X

cell mass

G

gas phase

L

liquid phase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Gow JS, Littlehailes JD, Smith SRL, Walter FB (1975) Single cell protein from methanol: the development of the ICI process. In: Tannenbaum SR, Wang DIC (eds) 2nd Intern. Conf.on Single Cell Protein, MIT Press, Cambridge MA, p 370Google Scholar
  2. 2.
    Andrew SPS (1981) In: Proceedings of Inst. Mech. Eng. Conf. Future developments on process plant technology, 17Google Scholar
  3. 3.
    Westlake R (1986) Chem.-Ing.-Tech., 58: 934Google Scholar
  4. 4.
    Müller HG (1985) BIOHOCH Reactor of Hoechst AG. In: Rehm H-J, Reed G (eds) Biotechnology; Brauer H (ed) vol 2, VCH, Weinheim, p 561Google Scholar
  5. 5.
    Zlokarnik M (1985) Bayer Tower Biology, In: Rehm H-J, Reed G (eds) Biotechnology; Brauer H (ed) vol 2, VCH, Weinheim, p 556Google Scholar
  6. 6.
    Hines DA, Bailey M, Ousby JC, Roesler FC (1975) I. Chem. E. Symposium Series No. 41, D1Google Scholar
  7. 7.
    ZoBell CE, Johnson FH (1949) J. Bacteriol. 57: 179Google Scholar
  8. 8.
    ZoBell CE, Cobet AB (1962) J. Bacteriology 84: 1228Google Scholar
  9. 9.
    Pope DH, Berger LR (1973) Arch. Mikrobiol. 93: 367Google Scholar
  10. 10.
    Marquis RE, Keller DM (1975) J. Bacteriology 122: 575Google Scholar
  11. 11.
    Albright LJ (1975) Can. J. Microbiol. 21: 1406Google Scholar
  12. 12.
    Yayanos AA, van Boxtel R, Dietz AS (1983) Appl. Environ. Microbiol. 46: 1357Google Scholar
  13. 13.
    Thorn SR, Marquis RE (1984) Appl. Environ. Microbiol. 47: 780Google Scholar
  14. 14.
    ZoBell CE, Oppenheimer CH (1950) J. Bacteriol. 60: 771Google Scholar
  15. 15.
    Rutberg L (1964) Acta Pathol. Microbiol. Scand. 61: 81Google Scholar
  16. 16.
    ZoBell CE (1970) In: Zimmermann AM (ed) High pressure effects on cellular processes, Academic, New York, p 85Google Scholar
  17. 17.
    Kinne O (1972) In: Kinne O (ed) Marine ecology, Wiley Interscience, London, p 1323Google Scholar
  18. 18.
    Marquis RE (1976) Adv. Microb. Physiol. 14: 159Google Scholar
  19. 19.
    Sato S, Mukataka S, Kataoka H, Takahashi J (1984) J. Ferment. Technol. 62: 71Google Scholar
  20. 20.
    Onken U, Jostmann T, Weiland P (1984) 3rd Europ. Congr. Biotechnol. Abstr. papers III, VCH, Weinheim, p 481Google Scholar
  21. 21.
    Onken U, Jostmann T (1984) Biotechnol. Lett. 6: 413Google Scholar
  22. 22.
    Hedén CG, Malmborg AS (1961) Sci. Repts. Ist. Super. Sanitá 1: 213Google Scholar
  23. 23.
    Othmer DF (1976) Process Biochem. 11: 8Google Scholar
  24. 24.
    KÄmpf HJ (1977) Chem. Ind. 29: 329Google Scholar
  25. 25.
    Schumpe A, Quicker G, Deckwer WD (1982) Adv. Biochem. Eng. 24: 1Google Scholar
  26. 26.
    Schumpe A (1985) Gas solubilities in biomedia. In: Rehm HJ, Reed G (eds) Biotechnology, Brauer H (ed) vol 2, VCH, Weinheim, p 159Google Scholar
  27. 27.
    Freier RK (1978) Aqueous solutions, vol 3, de Gruyter, Berlin, p 17Google Scholar
  28. 28.
    King AD, Nagel CW (1967) J. Food Sci. 32: 575Google Scholar
  29. 29.
    Bylinkina ES, Nikitina TS, Biryukov VV, Cherkasova ON (1973) Biotechnol. Bioeng. Symp. 4: 197Google Scholar
  30. 30.
    Ishizaki A, Shibai H, Hirose Y, Shiro T (1973) Agr. Biol. Chem. 37: 99, 107Google Scholar
  31. 31.
    Ghandi AP, Kjaergaard L (1975) Biotechnol. Bioeng. 17: 1109Google Scholar
  32. 32.
    Chen SL, Gutmanis F (1976) Biotechnol. Bioeng. 18: 1455Google Scholar
  33. 33.
    Gill CO, Tan KH (1979) Appl. Environ. Microbiol. 38: 237Google Scholar
  34. 34.
    Puhar E, Lorencez I, Fiechter A (1983) Eur. J. Appl. Microbiol. Biotechnol. 18; 131Google Scholar
  35. 35.
    Jostmann T (1986) Einflu\ des Gesamtdrucks und des Sauerstoffpartialdrucks auf das Wachstum des Bakteriums Ps. fluorescens im Druck-Schlaufenreaktor, Thesis, Dortmund UniversityGoogle Scholar
  36. 36.
    Ho CS, Smith MD (1986) Biotechnol. Bioeng. 28; 668Google Scholar
  37. 37.
    Pirt SJ, Mancini B (1975) J. Appl. Chem. Biotechnol. 25: 781Google Scholar
  38. 38.
    Zajic JE, Liu FS (1969) Dev. Ind. Microbiol. 11: 350Google Scholar
  39. 39.
    Sturm FI, Hurwitz SA, Deming JW, Kelly RM (1987) Biotechnol. Bioeng. 29: 1066Google Scholar
  40. 40.
    Molin G (1987) Proc. 4th Europ. Congr. Biotechnol. 3; 49Google Scholar
  41. 41.
    King AD, Nagel CW (1975) J. Food Sci. 40: 362Google Scholar
  42. 42.
    Kobayashi K, Ikeda S, Hishinuma K, Hirose Y, Okada H (1972) Agr. Biol. Chem. 36: 961Google Scholar
  43. 43.
    Kretschmer A, Wagner F (1980) Eur. J. Appl. Microbiol. Biotechnol. 10: 41Google Scholar
  44. 44.
    May OE, Herrick HT, Moyer AI, Wells PA (1934) Ind. Eng. Chem. 26: 575Google Scholar
  45. 45.
    Wells PA, Moyer AI, Stubbs JJ, Herrick HT (1937) Ind. Eng. Chem. 29: 653Google Scholar
  46. 46.
    TrÄger M, Müller U, Onken U (1987) Chem.-Ing.-Tech. 59: 939Google Scholar
  47. 47.
    Oosterhuis NMG, Groesbeek NM, Kossen NWF, Schenk ES (1985) Appl. Microbiol. Biotechnol. 21: 42Google Scholar
  48. 48.
    Gottlieb SF (1966) J. Bacteriol. 92: 1021Google Scholar
  49. 49.
    Brown OR, Silverberg RG, Huggett DO (1968) Appl. Microbiol. 16: 260Google Scholar
  50. 50.
    Brown OR, Huggett DO (1968) Appl. Microbiol. 16: 476Google Scholar
  51. 51.
    Gottlieb SF, Pakman LM (1968) J. Bacteriol. 95: 1003Google Scholar
  52. 52.
    Gottlieb SF (1971) Ann. Rev. Microbiol. 25: 111Google Scholar
  53. 53.
    MacLennan DG, Ousby JC, Vasey RB, Cotton NT (1971) J. Gen. Microbiol. 69: 395Google Scholar
  54. 54.
    Matsumura M, Kobayashi J (1980) J. Ferment. Technol. 58: 552Google Scholar
  55. 55.
    Brunker RL, Brown OR (1971) Microbios 4: 193Google Scholar
  56. 56.
    Onken U, Kiese S, Jostmann T (1984) Biotechnol. Lett. 6: 283Google Scholar
  57. 57.
    Onken U, Buchholz R, Riethus M (to be published)Google Scholar
  58. 58.
    Liefke E, Onken U (to be published)Google Scholar
  59. 59.
    Harrison DEF, MacLennan DG, Pirt SJ (1969) In: Perlman D (ed) Recent advances in fermentation technology. Academic, New York, p 117Google Scholar
  60. 60.
    Hartmeier W, Bronn WK, Dellweg H (1971) Chem.-Ing.-Tech. 43: 76Google Scholar
  61. 61.
    Moore B, Williams RS (1909) Biochem. J. 4: 177Google Scholar
  62. 62.
    Moore B, Williams RS (1910) Biochem. J. 5: 181Google Scholar
  63. 63.
    Adams A, (1912) Biochem. J. 7: 297Google Scholar
  64. 64.
    Akashi K, Shibai H, Hirose Y (1979) J. Ferment. Technol. 57: 317Google Scholar
  65. 65.
    Páca J, Gregr V (1979) Biotechnol. Bioeng. 21: 1827Google Scholar
  66. 66.
    Liefke E (1988) Kultivierung aerober Bakterien bei erhöhtem Sauerstoffpartialdruck als verfahrenstechnische Möglichkeit zur Beeinflussung von Wachstum und Produktbildung, Thesis, Dortmund UniversityGoogle Scholar
  67. 67.
    Webley DM (1954) J. Gen. Microbiol. 11: 114Google Scholar
  68. 68.
    Lee F-JS, Hassan HM (1987) Appl. Microbiol. Biotechnol. 26: 531Google Scholar
  69. 69.
    Clark DS, Lentz CP (1961) Can. J. Microbiol. 7: 447Google Scholar
  70. 70.
    Khan AH, Ghose TK (1973) J. Ferment. Technol. 51: 734Google Scholar
  71. 71.
    Kristiansen B, Sinclair CG (1979) Biotechnol. Bioeng. 21: 297Google Scholar
  72. 72.
    Okoshi H, Sato S, Mukataka S, Takahashi J (1987) Agr. Biol. Chem. 51: 257Google Scholar
  73. 73.
    Shibai H, Ishizaki A, Mizuno H, Hirose Y (1972) Agr. Biol. Chem. 37: 91Google Scholar
  74. 74.
    Yamada S, Mitsuru W, Chibata I (1978) J. Ferment. Technol. 56: 29Google Scholar
  75. 75.
    Buckland BC, Lilly MD, Dunnil P (1976) Biotechnol. Bioeng. 18: 601Google Scholar
  76. 76.
    Halliwell B (1977) Dechema Monogr. 81: 1Google Scholar
  77. 77.
    Halliwell B (1982) Trends Biochem. Sci. 7: 270Google Scholar
  78. 78.
    Fridovich I (1978) Science 201: 875Google Scholar
  79. 79.
    Brown OR, Yein F, Boehme D, Foudin L., Song CS (1979) Biochem. Biophys. Res. Comm. 91: 982Google Scholar
  80. 80.
    Robb SM (1966) J. Gen. Microbiol. 45: 17Google Scholar
  81. 81.
    Caldwell J (1965) Nature (London) 206: 321Google Scholar
  82. 82.
    Gifford GD, Pritchard GG (1969) J. Gen. Microbiol. 56; 143Google Scholar
  83. 83.
    Sies H (1986) Angew. Chem. Int. Ed. Engl. 25: 1058Google Scholar
  84. 84.
    Sies H (1984) Detoxification of oxygen free radicals. In: Bors W, Saran M, Tait D (eds) Oxygen radicals in chemistry and biology, de Gruyter, Berlin, p 653Google Scholar
  85. 85.
    Jones DP (1985) The role of oxygen concentration in oxidative stress. In: Sies H (ed) Oxidative stress, Academic, London, p 151Google Scholar
  86. 86.
    Brown OR, Yein F (1978) Biochem. Biophys. Res. Comm. 85: 1219Google Scholar
  87. 87.
    Boehme DE, Vincent K, Brown OR (1976) Nature 262: 418Google Scholar
  88. 88.
    Haugaard N (1968) Physiol. Rev. 48: 311Google Scholar
  89. 89.
    Barron ESG (1955) Arch. Biochem. Biophys. 59: 502Google Scholar
  90. 90.
    Williams RJ (1981) Oxygen and Life: An introduction, in: Oxygen and Life, Congresses I. Royal Soc. Chem., Birmingham 1980, Whitstable Litho, p 18Google Scholar
  91. 91.
    Haber F, Weiss J (1934) Proc. Roy. Soc. Acad. 147: 332Google Scholar
  92. 92.
    Cohen G (1985) The Fenton reaction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research, CRC Press, Boca RatonGoogle Scholar
  93. 93.
    de Groot H, Noll T (1987) Chemistry and Physics of Lipids 44; 209Google Scholar
  94. 94.
    Halliwell B, Gutteridge JMC (1986) Arch. Biochem. Biophys. 246: 501Google Scholar
  95. 95.
    Dahl TA, Midden WR, Hartman PE (1987) Photochem. Photobiol. 46: 345Google Scholar
  96. 96.
    Wolff SP, Garner A, Dean RT (1986) Trends Biochem. Sci. 11: 27Google Scholar
  97. 97.
    Bruynickx WJ, Mason HS, Morse SA (1978) Nature 274: 606Google Scholar
  98. 98.
    Farr SB, D'Avi R, Touati D (1986) Proc. Natl. Acad. Sci. USA 83: 8268Google Scholar
  99. 99.
    Gebicki JM, Bielski BHJ (1981) J. Am. Chem. Soc. 103: 2020Google Scholar
  100. 100.
    Dalton H, Postgat JR (1969) J. Gen. Microbiol. 54: 463Google Scholar
  101. 101.
    Lowe DJ, Thornerley RNF, Smith BE (1985) Nitrogenase. In: Harrison PM (ed) Metalloproteins I, VCH, Weinheim, p 207Google Scholar
  102. 102.
    Dingler C, Oelze J (1985) Arch. Microbiol. 141: 80Google Scholar
  103. 103.
    Vardar F, Lilly MD (1982) Eur. J. Appl. Microbiol. Biotechnol. 14: 203Google Scholar
  104. 104.
    Kataoka H, Sato S, Mukataka S, Namiki A, Yoshimura K, Takahashi J (1986) Biotechnol. Bioeng. 28: 663Google Scholar
  105. 105.
    Takamatsu T, Shioya S, Nakatani H, Fujimoto T, KawasugiT (1981) Adv. Biotechnol. 1: Pergamon, Oxford, p 581Google Scholar
  106. 106.
    Soni VK, Ghose TK (1974) J. Ferment. Technol. 52: 551Google Scholar
  107. 107.
    Katinger HD (1976) Eur. J. Appl. Microbiol. 3; 103Google Scholar
  108. 108.
    Gifford GD, Pritchard GG (1969) J. Gen. Microbiol. 56: 143Google Scholar
  109. 109.
    Gregory BM, Fridovich I (1973) J. Bacteriol. 114: 1193Google Scholar
  110. 110.
    Páca J (1980) Eur. J. Appl. Microbiol. Biotechnol. 9: 93Google Scholar
  111. 111.
    Harrison DEF, Pirt SJ (1967) J. Gen. Microbiol. 46: 193Google Scholar
  112. 112.
    Harrison DEF (1976) Adv. Microb. Physiol. 19: 243Google Scholar
  113. 113.
    Harrison DEF, Topiwala HH (1974) Adv. Biochem. Eng. 3: 167Google Scholar
  114. 114.
    Sokolov DP, Lirova SA, Sokolova EA (1983) Microbiology (USSR) 52: 715Google Scholar
  115. 115.
    Lirova SA, Sokolov DP, Senyushkin AA, Berestennikova ND, Rabotnova IL (1986) Microbiology (USSR) 55: 104Google Scholar
  116. 116.
    Sweere APJ, Luyben KChAM, Kossen NWF (1987) Enzyme Microb. Technol. 9: 386Google Scholar
  117. 117.
    Vardar F (1983) Process Biochem. 18: 21Google Scholar
  118. 118.
    Onken U, Weiland P (1983) Adv. Biotechnol. Proc. 1: 67Google Scholar
  119. 119.
    Danckwerts PV (1970) Gas-liquid reactions, McGraw-Hill, New York, p 239Google Scholar
  120. 120.
    Kiese S (1982) Untersuchung des Druckeinflusses auf das aerobe Wachstum einer Hefe im Airliftfermenter, Thesis, Dortmund UniversityGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Universität Dortmund, Fachbereich ChemietechnikDortmund 50

Personalised recommendations