Advertisement

The use of calorimetry in biotechnology

Conference paper
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 40)

Abstract

After a short review of the development of biological calorimetry and a discussion of the instrumentation and the measuring principles that have been applied to study heat generation by microbial cultures and other cellular systems, this article demonstrates how heat evolution depends on growth, biomass yield, maintenance metabolism, nature of substrate, energetic efficiency of growth, oxygen uptake, and product formation. Theoretical considerations are used together with experimental evidence to explain the nature of these relationships and the underlying reasons. The possibilities of exploiting these relationships in order to gain information on any of the above factors by applying calorimetric measurements to biotechnology have been emphasized and developed throughout this paper.

Keywords

Biomass Yield Yield Coefficient Heat Yield Minimal Salt Medium Heat Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols

A

heat transfer area (Eq. (4)) (m2)

Ai

ash fraction of compound i

Aj

ash fraction of compound j

C

carbon

D

dilution rate (h−1)

ER

energy recovery (Eq. (53))

H

hydrogen (1)

δH′i

molar or C-molar heat of combustion of compound i, kJ mol−1 or kJ C-mol−1

δHi*

heat of combustion of compound i assuming nitrogen is released as NH3 (Eq. (23)), kJ C-mol−1

k

correction factor for adiabatic calorimetry (Eq. (1)) ideally equal to heat capacity of vessel and contents (J K−1) (Eq. (1))

Kp

total heat capacity of system (J K−1) (Eq. (2))

mQ

heat evolved due to maintenance (W g−1) (Eq. (44))

M′i

formula mass of one C-mol of compound i

M′j

formula mass of one C-mol of compound j

N

nitrogen (3)

O

oxygen (2)

OUR

oxygen uptake rate (mol L−1 h−1)

P1, P2, P3

moles of element H, O, and N per C-mol product (mol C-mol−1)

q

heat evolution rate (W L−1)

qA

heat generated through agitation (W)

qC

cooling power (Eq. (3)) (W)

qF

heat transferred to cooling system (Eq. (4)) (W)

qG

heat lost to gas-stream (W)

qH

heat released by electrical heater (Eq. (3)) (W)

qL

heat losses from the system (W)

qR

heat generated by the reaction (W)

Q

heat liberated (Eq. (1)) (kJ)

Q0

Heat evolved per equivalent of electrons transferred to oxygen (given by Eq. (19)) (kJ C-mol−1 eq−1 electrons)

r′i

conversion rate of compound i (C-mol s−1 L−1)

r′j

conversion rate of compound j (C-mol s−1 L−1)

S1, S2, S3

moles of element H, O, and N per C-mol substrate S (mol C-mol−1)

TJ

temperature of jacket oil (Eq. (4)) (K)

TR

temperature of reactor contents (Eq. (4)) (K)

U

global heat transfer coefficient (Eq. (4)) (Wm−2 K−1)

V

potential difference (volts)

W

water

X1, X2, X3

moles of element H, O or N per C-mol biomass X (mol C-mol−1)

Yij/max

maximum yield coefficient of i with respect to j for mQ=O (Eq. (44)), (g g−1)

Yij/min

minimum yield coefficient of i with respect to j (Eq. (45)) (g g−1)

YkJ

specific heat yield coefficient (kJ g−1 cell dry weight)

YQ/i

heat yield coefficient with respect to compound i (kJ g−1)

YQ/X

heat yield coefficient with respect to biomass (kJ g−1)

Y′C/S

CO2 yield coefficient (mol C-mol−1)

Y′N/S

Nitrogen yield coefficient (mol C-mol−1)

Y′O/S

Oxygen yield coefficient (mol C-mol−1)

Y′P/S

Product yield coefficient (mol C-mol−1)

Y′Q/C

heat yield coefficient with respect to CO2 (kJ C-mol−1)

Y′Q/O

heat yield coefficient with respect to oxygen (kJ mol−1)

Y′Q/S

heat yield coefficient with respect to substrate (kJ C-mol−1)

Y′X/S

Biomass yield coefficient (mol C-mol−1)

Y′W/S

H2O yield coefficient (mol C-mol−1)

(Y′i/j)F

yield coefficient of component i with respect to j for purely anaerobic growth (Eq. (32)) (mol C-mol−1)

(Y′ij)R

yield coefficient of component i with respect to j for pure respiratory growth (Eq. (31)) (mol C-mol−1)

δs, δx, δp

degree of hydrogenation of substrate, biomass and product, respectively

γsc

constant = 4.67 (Eq. (47))

γi/0

reductance degree of compound i with respect to N2

γs, γx, γp

reductance degree of substrate, biomass and product respectively defined with respect to NH3

ηH

enthalpy efficiency of growth (Eq. (51))

Μ

specific growth rate (h−1)

Ω

‘degree of aerobicity’ of culture (Eq. (33)) i.e., the relative fraction of aerobic to anaerotic metabolism. Ω=1 for purely aerobic growth, Ω=0 for purely anaerobic growth

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lavoisier AL, de Laplace PS (1784) Histoire de l'Académie des Sciences, Année 1780 p 355Google Scholar
  2. 2.
    Jéquier E (1983) Nestlé Research News 1982/83: 27Google Scholar
  3. 3.
    Birou B, von Stockar U (1989) Enz. Microb. Technol. 11: 12Google Scholar
  4. 4.
    Marison IW, von Stockar U (1987) Enz. Microb. Technol. 9: 33Google Scholar
  5. 5.
    Dubrunfaut M (1856) C.R. Acad. Sci. Paris 42: 945Google Scholar
  6. 6.
    Rubner M (1903) Hyg. Rundsch. 13: 857Google Scholar
  7. 7.
    Rubner M (1903) Arch. Hyg. 48: 260Google Scholar
  8. 8.
    Rubner M (1904) Arch. Hyg. 66: 81Google Scholar
  9. 9.
    Bouffard A (1895) C.R. Acad. Sci. Paris 121: 357Google Scholar
  10. 10.
    Tian A (1923) Bull. Soc. Chim. 33: 427Google Scholar
  11. 11.
    Calvet E (1948) C.R. Acad. Sci. Paris 226: 1702Google Scholar
  12. 12.
    Wadsö I (1968) Acta Chem. Scand. 22: 927Google Scholar
  13. 13.
    Fujita T, Nunomura K, Kagami I, Nishikawa Y (1976) J. Gen Microbiol. 22: 43Google Scholar
  14. 14.
    Lamprecht I, Schaarschmidt B (1973) Bull. Soc. Chim. Fr. 4: 1200Google Scholar
  15. 15.
    Eriksson R, Holme T (1973) Biotechnol. Bioeng. Symp. 4: 581Google Scholar
  16. 16.
    Forrest WW, Walker DJ, Hopgood MF (1961) J. Bacteriol. 82: 685Google Scholar
  17. 17.
    Belaich JP, Senez JC, Murgier M (1968) J. Bacteriol. 95: 1750Google Scholar
  18. 18.
    Beezer AE (1976) In: Lamprecht I, Schaarschmidt B (eds) Application of calorimetry in life sciences. de Gruyter, Berlin. p. 109Google Scholar
  19. 19.
    Wadsö I (1980) In: Beezer AE (ed.) Biological microcalorimetry, Academic Press, London p. 247Google Scholar
  20. 20.
    Ishikawa Y, Shoda M, Maruyama H (1981) Biotechnol. Bioeng. 23: 2629Google Scholar
  21. 21.
    Ishikawa Y, Shoda M (1983) Biotechnol. Bioeng. 25: 1817Google Scholar
  22. 22.
    Demoun Z, Boussand R, Cotten D, Belaich J-P (1985) Biotechnol. Bioeng. 27: 996Google Scholar
  23. 23.
    Demoun Z, Belaich J-P (1985) Biotechnol. Bioeng. 27: 1005Google Scholar
  24. 24.
    Cooney CL, Wang DIC, Mateles RI (1968) Biotechnol. Bioeng. 11: 269Google Scholar
  25. 25.
    Mou DG, Cooney CL (1976) Biotechnol. Bioeng. 18: 1371Google Scholar
  26. 26.
    Wang H, Wang DIC, Cooney CL (1978) Eur. J. Appl. Microbiol. 5: 207Google Scholar
  27. 27.
    Volesky B, Luong JHT, Thambimuthu KV (1978) Can. J. Chem. Eng. 56: 526Google Scholar
  28. 28.
    Luong JHT, Volesky B (1980) Can. J. Chem. Eng. 58: 497Google Scholar
  29. 29.
    Luong JHT, Yerushalmi L, Volesky B (1983) Enz. Microb. Technol. 5: 291Google Scholar
  30. 30.
    Marison IW, von Stockar U (1986) Biotechnol. Bioeng. 28: 1780Google Scholar
  31. 31.
    Marison IW, von Stockar U (1985) Thermochim. Acta 85: 493Google Scholar
  32. 32.
    Karlsen LG, Villadsen J (1987) Chem. Eng. Sci. 42: 1153Google Scholar
  33. 33.
    Hemminger W, Höhne G (1984) In: Calorimetry. Fundamentals and practice, Verlag Chemie, Weinheim, FRG. p 131Google Scholar
  34. 34.
    Wadsö I (1987) In: James AM (ed) Thermal and energetic studies of cellular biological systems. Wright, Bristol, UK. p 34Google Scholar
  35. 35.
    Spink CH (1980) CRC Crit. Rev. Anal. Chem. 9 (1): 1Google Scholar
  36. 36.
    Martin CJ, Marini MA (1979) CRC Crit. Rev. Anal. Chem. 8 (3): 221Google Scholar
  37. 37.
    Sturtevant JM (1971) In: Weissberger A, Rossiter BW (eds) Physical methods of chemistry vol I part 5. John Wiley, New York, p 347Google Scholar
  38. 38.
    Wadsö I (1975) In: Pain R, Smith B (eds) New Techniques in Biophysics and Cell Biology vol 2. R. John Wiley, New York, p 85Google Scholar
  39. 39.
    Spink C, Wadsö I (1976) In: Glick D (ed) Methods of biochemical analysis vol 23. John Wiley, New York, p 1Google Scholar
  40. 40.
    Kubaschewski O, Hultgren R (1962) In: Skinner HA (ed) Experimental thermochemistry vol 2. Interscience, New YorkGoogle Scholar
  41. 41.
    Calvet E (1953) C.R. Acad. Sci. Paris 236: 377Google Scholar
  42. 42.
    Calvet E, Prat H (1956) Microcalorimétrie, applications physiochimiques et biologiques. Masson, ParisGoogle Scholar
  43. 43.
    Calvet E, Prat H (1963) Recent progress in microcalorimetry. Pergamon, London, U.K.Google Scholar
  44. 44.
    Schaarschmidt B, Reichert U (1981) Exp. Cell. Res. 131: 480Google Scholar
  45. 45.
    Martin CJ, Marini MA (1979) CRC Crit. Rev. Anal. Chem. 8(3): 221Google Scholar
  46. 46.
    Jarret IG, Clark DG, Filsell OH, Harvey JW, Clark MG (1979) Biochem. J. 180: 631Google Scholar
  47. 47.
    Ishikawa Y, Nonoyama Y, Shoda M (1981) Biotechnol. Bioeng. 23: 2825Google Scholar
  48. 48.
    Demoun Z, Belaich J-P (1979) J. Bacteriol. 140: 377Google Scholar
  49. 49.
    Monk P, Wadsö I (1968) Acta Chem. Scand. 22: 1842Google Scholar
  50. 50.
    Spink C, Wadsö I (1976) In: Glick D (ed) Methods of biochemical analysis. John Wiley, New York. p 1Google Scholar
  51. 51.
    Poore VM, Beezer AE (1983) Thermochim. Acta 63: 133Google Scholar
  52. 52.
    Bayer K, Fuehrer F (1982) Process Biochem. 17: 42Google Scholar
  53. 53.
    Luong JHT, Volesky B (1982) Eur. J. Appl. Microbiol. Biotechnol. 16: 28Google Scholar
  54. 54.
    Regenass W (1977) Thermochim. Acta 20: 65Google Scholar
  55. 55.
    Regenass W (1983) Chimia 37: 430Google Scholar
  56. 56.
    Giger G, Aichert A, Regenass W (1982) Swiss Chem. 4 (3 a): 33Google Scholar
  57. 57.
    Birou B, Marison IW, von Stockar U (1987) Biotechnol. Bioeng. 30: 650Google Scholar
  58. 58.
    Birou B (1986) PhD Thesis, EPFL, Switzerland No. 612Google Scholar
  59. 59.
    von Stockar U, Birou B (1987) Biotechnol. Bioeng. (accepted for publication)Google Scholar
  60. 60.
    von Stockar U, Marison IW, Birou B (1987) In: Moody GW, Baker PB (eds) Bioreactors and biotransformations. Elsevier, London, p 87Google Scholar
  61. 61.
    Sedlaczek L (1964) Acta Microbiol. Polon. 13: 101Google Scholar
  62. 62.
    Prochazka GJ, Payne WJ, Mayberry WR (1970) J. Bacteriol. 104: 646Google Scholar
  63. 63.
    Prochazka GJ, Payne WJ, Mayberry WR (1973) Biotechnol. Bioeng. 15: 1007Google Scholar
  64. 64.
    Belaich JP (1980) In: Beezer AE (ed.) Biological Microcalorimetry. Academic, London. p 1Google Scholar
  65. 65.
    Ho KP, Payne WJ (1979) Biotechnol. Bioeng. 21: 787Google Scholar
  66. 66.
    Cordier JL, Butsch BM, Birou B, von Stockar U (1987) Appl. Microbiol. Biotechnol. 25: 305Google Scholar
  67. 67.
    Thornton WM (1917) Philos. Mag. 33: 196Google Scholar
  68. 68.
    Kharasch MS, Sher B (1925) J. Phys. Chem. 29: 625Google Scholar
  69. 69.
    Giese AC (1968) Cell Physiology, 3rd Edition. W. B. Saunders, Philadelphia, p 412Google Scholar
  70. 70.
    Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical, Amsterdam p 330Google Scholar
  71. 71.
    Minkevich IG, Eroshin VK (1973) Biotechnol. Bioeng. Symp. 4: 21Google Scholar
  72. 72.
    Erickson LE, Minkevich IG, Eroshin VK (1978) Biotechnol. Bioeng. 20: 1595Google Scholar
  73. 73.
    Erickson LE, Selga SE, Viesturs UE (1978) Biotechnol. Bioeng. 20: 1623Google Scholar
  74. 74.
    Stephanopoulos G, San KY (1984) Biotechnol. Bioeng. 26: 1176Google Scholar
  75. 75.
    San KY, Stephanopoulos G (1984) Biotechnol. Bioeng. 26: 1189Google Scholar
  76. 76.
    Grosz R, Stephanopoulos G (1984) Biotechnol. Bioeng. 26: 1198Google Scholar
  77. 77.
    Stephanopoulos G, San KY (1984) Biotechnol. Bioeng. 26: 1209Google Scholar
  78. 78.
    Russell WJ, Zettler JR, Blanchard GC, Boling AE (1975) In: Heden C-G, Illeni T (eds) New approaches to the identification of microorganisms, John Wiley, London, p 101Google Scholar
  79. 79.
    Ljungholm K, Wadsö I, Mardh P-A (1976) J. Gen. Microbiol. 96: 283Google Scholar
  80. 80.
    Monk P, Wadsö I (1975) J. Appl. Bacteriol. 38: 71Google Scholar
  81. 81.
    Perry BF, Beezer AE, Miles RJ (1983) J. Appl. Bacteriol. 54: 183Google Scholar
  82. 82.
    Schaarschmidt B, Lamprecht I (1976) Experienta 32: 1230Google Scholar
  83. 83.
    Beezer AE, Bettelheim KA, O'Farrell SM, Al-Salihi S, Shaw EJ (1977) In: Johnson HH, Newson SWB (eds) 2nd Int. Symp. Rapid Methods and Automation in Microbiology. Learned Information, OxfordGoogle Scholar
  84. 84.
    Lamprecht I, Meggers C (1969) Z. Naturforsch. (C) 24b: 1205Google Scholar
  85. 85.
    Bowden CPP, James AM (1985) Microbios 44: 75Google Scholar
  86. 86.
    Forrest WW, Walker DJ, Hopgood MF (1961) J. Bacteriol. 82: 648Google Scholar
  87. 87.
    Luong JHT, Volesky B (1982) Can. J. Chem. Eng. 60: 163Google Scholar
  88. 88.
    Luong JHT, Volesky B (1983) Adv. Biochem. Eng. 28: 1Google Scholar
  89. 89.
    Nagai S, Aiba S (1972) J. Gen. Microbiol. 73: 531Google Scholar
  90. 90.
    Poole AK, Haddock BA (1975) FEBS Letts. 58: 249Google Scholar
  91. 91.
    Brettel R, Lamprecht I, Schaarschmidt B (1981) Eur. J. Appl. Microbiol. Biotech. 11: 201Google Scholar
  92. 92.
    Linton JD, Stephanson RJ (1978) FEMS Microbiol. Letts. 3: 95Google Scholar
  93. 93.
    Roels JA (1980) Biotechnol. Bioeng. 22: 2457Google Scholar
  94. 94.
    Heijnen JJ, Roels JA (1981) Biotechnol. Bioeng. 23: 739Google Scholar
  95. 95.
    Volesky B, Yerushalmi L, Luong JHT (1982) J. Chem. Technol. Biotechnol. 32: 650Google Scholar
  96. 96.
    Belaich A, Belaich J-P (1976) J. Bacteriol. 125: 14Google Scholar
  97. 97.
    von Stockar U, Marison IW: The use of on-line heat measurements in bioreactor control. (To be published)Google Scholar
  98. 98.
    Birou B, Marison IW, von Stockar U: Proc. 4th Europ. Congr. Biotech. (1987) vol 3, p 105, Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Institute of Chemical EngineeringSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland

Personalised recommendations