Skip to main content

The use of calorimetry in biotechnology

  • Conference paper
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 40))

Abstract

After a short review of the development of biological calorimetry and a discussion of the instrumentation and the measuring principles that have been applied to study heat generation by microbial cultures and other cellular systems, this article demonstrates how heat evolution depends on growth, biomass yield, maintenance metabolism, nature of substrate, energetic efficiency of growth, oxygen uptake, and product formation. Theoretical considerations are used together with experimental evidence to explain the nature of these relationships and the underlying reasons. The possibilities of exploiting these relationships in order to gain information on any of the above factors by applying calorimetric measurements to biotechnology have been emphasized and developed throughout this paper.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

heat transfer area (Eq. (4)) (m2)

Ai :

ash fraction of compound i

Aj :

ash fraction of compound j

C:

carbon

D:

dilution rate (h−1)

ER:

energy recovery (Eq. (53))

H:

hydrogen (1)

δH′i :

molar or C-molar heat of combustion of compound i, kJ mol−1 or kJ C-mol−1

δH *i :

heat of combustion of compound i assuming nitrogen is released as NH3 (Eq. (23)), kJ C-mol−1

k:

correction factor for adiabatic calorimetry (Eq. (1)) ideally equal to heat capacity of vessel and contents (J K−1) (Eq. (1))

Kp :

total heat capacity of system (J K−1) (Eq. (2))

mQ :

heat evolved due to maintenance (W g−1) (Eq. (44))

M′i :

formula mass of one C-mol of compound i

M′j :

formula mass of one C-mol of compound j

N:

nitrogen (3)

O:

oxygen (2)

OUR:

oxygen uptake rate (mol L−1 h−1)

P1, P2, P3 :

moles of element H, O, and N per C-mol product (mol C-mol−1)

q:

heat evolution rate (W L−1)

qA :

heat generated through agitation (W)

qC :

cooling power (Eq. (3)) (W)

qF :

heat transferred to cooling system (Eq. (4)) (W)

qG :

heat lost to gas-stream (W)

qH :

heat released by electrical heater (Eq. (3)) (W)

qL :

heat losses from the system (W)

qR :

heat generated by the reaction (W)

Q:

heat liberated (Eq. (1)) (kJ)

Q0 :

Heat evolved per equivalent of electrons transferred to oxygen (given by Eq. (19)) (kJ C-mol−1 eq−1 electrons)

r′i :

conversion rate of compound i (C-mol s−1 L−1)

r′j :

conversion rate of compound j (C-mol s−1 L−1)

S1, S2, S3 :

moles of element H, O, and N per C-mol substrate S (mol C-mol−1)

TJ :

temperature of jacket oil (Eq. (4)) (K)

TR :

temperature of reactor contents (Eq. (4)) (K)

U:

global heat transfer coefficient (Eq. (4)) (Wm−2 K−1)

V:

potential difference (volts)

W:

water

X1, X2, X3 :

moles of element H, O or N per C-mol biomass X (mol C-mol−1)

Y j/maxi :

maximum yield coefficient of i with respect to j for mQ=O (Eq. (44)), (g g−1)

Y j/mini :

minimum yield coefficient of i with respect to j (Eq. (45)) (g g−1)

YkJ :

specific heat yield coefficient (kJ g−1 cell dry weight)

YQ/i :

heat yield coefficient with respect to compound i (kJ g−1)

YQ/X :

heat yield coefficient with respect to biomass (kJ g−1)

Y′C/S :

CO2 yield coefficient (mol C-mol−1)

Y′N/S :

Nitrogen yield coefficient (mol C-mol−1)

Y′O/S :

Oxygen yield coefficient (mol C-mol−1)

Y′P/S :

Product yield coefficient (mol C-mol−1)

Y′Q/C :

heat yield coefficient with respect to CO2 (kJ C-mol−1)

Y′Q/O :

heat yield coefficient with respect to oxygen (kJ mol−1)

Y′Q/S :

heat yield coefficient with respect to substrate (kJ C-mol−1)

Y′X/S :

Biomass yield coefficient (mol C-mol−1)

Y′W/S :

H2O yield coefficient (mol C-mol−1)

(Y′i/j)F :

yield coefficient of component i with respect to j for purely anaerobic growth (Eq. (32)) (mol C-mol−1)

(Y′ ji )R :

yield coefficient of component i with respect to j for pure respiratory growth (Eq. (31)) (mol C-mol−1)

δs, δx, δp :

degree of hydrogenation of substrate, biomass and product, respectively

γ cs :

constant = 4.67 (Eq. (47))

γi/0 :

reductance degree of compound i with respect to N2

γs, γx, γp :

reductance degree of substrate, biomass and product respectively defined with respect to NH3

ηH :

enthalpy efficiency of growth (Eq. (51))

Μ:

specific growth rate (h−1)

Ω:

‘degree of aerobicity’ of culture (Eq. (33)) i.e., the relative fraction of aerobic to anaerotic metabolism. Ω=1 for purely aerobic growth, Ω=0 for purely anaerobic growth

References

  1. Lavoisier AL, de Laplace PS (1784) Histoire de l'Académie des Sciences, Année 1780 p 355

    Google Scholar 

  2. Jéquier E (1983) Nestlé Research News 1982/83: 27

    Google Scholar 

  3. Birou B, von Stockar U (1989) Enz. Microb. Technol. 11: 12

    Google Scholar 

  4. Marison IW, von Stockar U (1987) Enz. Microb. Technol. 9: 33

    Google Scholar 

  5. Dubrunfaut M (1856) C.R. Acad. Sci. Paris 42: 945

    Google Scholar 

  6. Rubner M (1903) Hyg. Rundsch. 13: 857

    Google Scholar 

  7. Rubner M (1903) Arch. Hyg. 48: 260

    Google Scholar 

  8. Rubner M (1904) Arch. Hyg. 66: 81

    Google Scholar 

  9. Bouffard A (1895) C.R. Acad. Sci. Paris 121: 357

    Google Scholar 

  10. Tian A (1923) Bull. Soc. Chim. 33: 427

    Google Scholar 

  11. Calvet E (1948) C.R. Acad. Sci. Paris 226: 1702

    Google Scholar 

  12. Wadsö I (1968) Acta Chem. Scand. 22: 927

    Google Scholar 

  13. Fujita T, Nunomura K, Kagami I, Nishikawa Y (1976) J. Gen Microbiol. 22: 43

    Google Scholar 

  14. Lamprecht I, Schaarschmidt B (1973) Bull. Soc. Chim. Fr. 4: 1200

    Google Scholar 

  15. Eriksson R, Holme T (1973) Biotechnol. Bioeng. Symp. 4: 581

    Google Scholar 

  16. Forrest WW, Walker DJ, Hopgood MF (1961) J. Bacteriol. 82: 685

    Google Scholar 

  17. Belaich JP, Senez JC, Murgier M (1968) J. Bacteriol. 95: 1750

    Google Scholar 

  18. Beezer AE (1976) In: Lamprecht I, Schaarschmidt B (eds) Application of calorimetry in life sciences. de Gruyter, Berlin. p. 109

    Google Scholar 

  19. Wadsö I (1980) In: Beezer AE (ed.) Biological microcalorimetry, Academic Press, London p. 247

    Google Scholar 

  20. Ishikawa Y, Shoda M, Maruyama H (1981) Biotechnol. Bioeng. 23: 2629

    Google Scholar 

  21. Ishikawa Y, Shoda M (1983) Biotechnol. Bioeng. 25: 1817

    Google Scholar 

  22. Demoun Z, Boussand R, Cotten D, Belaich J-P (1985) Biotechnol. Bioeng. 27: 996

    Google Scholar 

  23. Demoun Z, Belaich J-P (1985) Biotechnol. Bioeng. 27: 1005

    Google Scholar 

  24. Cooney CL, Wang DIC, Mateles RI (1968) Biotechnol. Bioeng. 11: 269

    Google Scholar 

  25. Mou DG, Cooney CL (1976) Biotechnol. Bioeng. 18: 1371

    Google Scholar 

  26. Wang H, Wang DIC, Cooney CL (1978) Eur. J. Appl. Microbiol. 5: 207

    Google Scholar 

  27. Volesky B, Luong JHT, Thambimuthu KV (1978) Can. J. Chem. Eng. 56: 526

    Google Scholar 

  28. Luong JHT, Volesky B (1980) Can. J. Chem. Eng. 58: 497

    Google Scholar 

  29. Luong JHT, Yerushalmi L, Volesky B (1983) Enz. Microb. Technol. 5: 291

    Google Scholar 

  30. Marison IW, von Stockar U (1986) Biotechnol. Bioeng. 28: 1780

    Google Scholar 

  31. Marison IW, von Stockar U (1985) Thermochim. Acta 85: 493

    Google Scholar 

  32. Karlsen LG, Villadsen J (1987) Chem. Eng. Sci. 42: 1153

    Google Scholar 

  33. Hemminger W, Höhne G (1984) In: Calorimetry. Fundamentals and practice, Verlag Chemie, Weinheim, FRG. p 131

    Google Scholar 

  34. Wadsö I (1987) In: James AM (ed) Thermal and energetic studies of cellular biological systems. Wright, Bristol, UK. p 34

    Google Scholar 

  35. Spink CH (1980) CRC Crit. Rev. Anal. Chem. 9 (1): 1

    Google Scholar 

  36. Martin CJ, Marini MA (1979) CRC Crit. Rev. Anal. Chem. 8 (3): 221

    Google Scholar 

  37. Sturtevant JM (1971) In: Weissberger A, Rossiter BW (eds) Physical methods of chemistry vol I part 5. John Wiley, New York, p 347

    Google Scholar 

  38. Wadsö I (1975) In: Pain R, Smith B (eds) New Techniques in Biophysics and Cell Biology vol 2. R. John Wiley, New York, p 85

    Google Scholar 

  39. Spink C, Wadsö I (1976) In: Glick D (ed) Methods of biochemical analysis vol 23. John Wiley, New York, p 1

    Google Scholar 

  40. Kubaschewski O, Hultgren R (1962) In: Skinner HA (ed) Experimental thermochemistry vol 2. Interscience, New York

    Google Scholar 

  41. Calvet E (1953) C.R. Acad. Sci. Paris 236: 377

    Google Scholar 

  42. Calvet E, Prat H (1956) Microcalorimétrie, applications physiochimiques et biologiques. Masson, Paris

    Google Scholar 

  43. Calvet E, Prat H (1963) Recent progress in microcalorimetry. Pergamon, London, U.K.

    Google Scholar 

  44. Schaarschmidt B, Reichert U (1981) Exp. Cell. Res. 131: 480

    Google Scholar 

  45. Martin CJ, Marini MA (1979) CRC Crit. Rev. Anal. Chem. 8(3): 221

    Google Scholar 

  46. Jarret IG, Clark DG, Filsell OH, Harvey JW, Clark MG (1979) Biochem. J. 180: 631

    Google Scholar 

  47. Ishikawa Y, Nonoyama Y, Shoda M (1981) Biotechnol. Bioeng. 23: 2825

    Google Scholar 

  48. Demoun Z, Belaich J-P (1979) J. Bacteriol. 140: 377

    Google Scholar 

  49. Monk P, Wadsö I (1968) Acta Chem. Scand. 22: 1842

    Google Scholar 

  50. Spink C, Wadsö I (1976) In: Glick D (ed) Methods of biochemical analysis. John Wiley, New York. p 1

    Google Scholar 

  51. Poore VM, Beezer AE (1983) Thermochim. Acta 63: 133

    Google Scholar 

  52. Bayer K, Fuehrer F (1982) Process Biochem. 17: 42

    Google Scholar 

  53. Luong JHT, Volesky B (1982) Eur. J. Appl. Microbiol. Biotechnol. 16: 28

    Google Scholar 

  54. Regenass W (1977) Thermochim. Acta 20: 65

    Google Scholar 

  55. Regenass W (1983) Chimia 37: 430

    Google Scholar 

  56. Giger G, Aichert A, Regenass W (1982) Swiss Chem. 4 (3 a): 33

    Google Scholar 

  57. Birou B, Marison IW, von Stockar U (1987) Biotechnol. Bioeng. 30: 650

    Google Scholar 

  58. Birou B (1986) PhD Thesis, EPFL, Switzerland No. 612

    Google Scholar 

  59. von Stockar U, Birou B (1987) Biotechnol. Bioeng. (accepted for publication)

    Google Scholar 

  60. von Stockar U, Marison IW, Birou B (1987) In: Moody GW, Baker PB (eds) Bioreactors and biotransformations. Elsevier, London, p 87

    Google Scholar 

  61. Sedlaczek L (1964) Acta Microbiol. Polon. 13: 101

    Google Scholar 

  62. Prochazka GJ, Payne WJ, Mayberry WR (1970) J. Bacteriol. 104: 646

    Google Scholar 

  63. Prochazka GJ, Payne WJ, Mayberry WR (1973) Biotechnol. Bioeng. 15: 1007

    Google Scholar 

  64. Belaich JP (1980) In: Beezer AE (ed.) Biological Microcalorimetry. Academic, London. p 1

    Google Scholar 

  65. Ho KP, Payne WJ (1979) Biotechnol. Bioeng. 21: 787

    Google Scholar 

  66. Cordier JL, Butsch BM, Birou B, von Stockar U (1987) Appl. Microbiol. Biotechnol. 25: 305

    Google Scholar 

  67. Thornton WM (1917) Philos. Mag. 33: 196

    Google Scholar 

  68. Kharasch MS, Sher B (1925) J. Phys. Chem. 29: 625

    Google Scholar 

  69. Giese AC (1968) Cell Physiology, 3rd Edition. W. B. Saunders, Philadelphia, p 412

    Google Scholar 

  70. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical, Amsterdam p 330

    Google Scholar 

  71. Minkevich IG, Eroshin VK (1973) Biotechnol. Bioeng. Symp. 4: 21

    Google Scholar 

  72. Erickson LE, Minkevich IG, Eroshin VK (1978) Biotechnol. Bioeng. 20: 1595

    Google Scholar 

  73. Erickson LE, Selga SE, Viesturs UE (1978) Biotechnol. Bioeng. 20: 1623

    Google Scholar 

  74. Stephanopoulos G, San KY (1984) Biotechnol. Bioeng. 26: 1176

    Google Scholar 

  75. San KY, Stephanopoulos G (1984) Biotechnol. Bioeng. 26: 1189

    Google Scholar 

  76. Grosz R, Stephanopoulos G (1984) Biotechnol. Bioeng. 26: 1198

    Google Scholar 

  77. Stephanopoulos G, San KY (1984) Biotechnol. Bioeng. 26: 1209

    Google Scholar 

  78. Russell WJ, Zettler JR, Blanchard GC, Boling AE (1975) In: Heden C-G, Illeni T (eds) New approaches to the identification of microorganisms, John Wiley, London, p 101

    Google Scholar 

  79. Ljungholm K, Wadsö I, Mardh P-A (1976) J. Gen. Microbiol. 96: 283

    Google Scholar 

  80. Monk P, Wadsö I (1975) J. Appl. Bacteriol. 38: 71

    Google Scholar 

  81. Perry BF, Beezer AE, Miles RJ (1983) J. Appl. Bacteriol. 54: 183

    Google Scholar 

  82. Schaarschmidt B, Lamprecht I (1976) Experienta 32: 1230

    Google Scholar 

  83. Beezer AE, Bettelheim KA, O'Farrell SM, Al-Salihi S, Shaw EJ (1977) In: Johnson HH, Newson SWB (eds) 2nd Int. Symp. Rapid Methods and Automation in Microbiology. Learned Information, Oxford

    Google Scholar 

  84. Lamprecht I, Meggers C (1969) Z. Naturforsch. (C) 24b: 1205

    Google Scholar 

  85. Bowden CPP, James AM (1985) Microbios 44: 75

    Google Scholar 

  86. Forrest WW, Walker DJ, Hopgood MF (1961) J. Bacteriol. 82: 648

    Google Scholar 

  87. Luong JHT, Volesky B (1982) Can. J. Chem. Eng. 60: 163

    Google Scholar 

  88. Luong JHT, Volesky B (1983) Adv. Biochem. Eng. 28: 1

    Google Scholar 

  89. Nagai S, Aiba S (1972) J. Gen. Microbiol. 73: 531

    Google Scholar 

  90. Poole AK, Haddock BA (1975) FEBS Letts. 58: 249

    Google Scholar 

  91. Brettel R, Lamprecht I, Schaarschmidt B (1981) Eur. J. Appl. Microbiol. Biotech. 11: 201

    Google Scholar 

  92. Linton JD, Stephanson RJ (1978) FEMS Microbiol. Letts. 3: 95

    Google Scholar 

  93. Roels JA (1980) Biotechnol. Bioeng. 22: 2457

    Google Scholar 

  94. Heijnen JJ, Roels JA (1981) Biotechnol. Bioeng. 23: 739

    Google Scholar 

  95. Volesky B, Yerushalmi L, Luong JHT (1982) J. Chem. Technol. Biotechnol. 32: 650

    Google Scholar 

  96. Belaich A, Belaich J-P (1976) J. Bacteriol. 125: 14

    Google Scholar 

  97. von Stockar U, Marison IW: The use of on-line heat measurements in bioreactor control. (To be published)

    Google Scholar 

  98. Birou B, Marison IW, von Stockar U: Proc. 4th Europ. Congr. Biotech. (1987) vol 3, p 105, Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

von Stockar, U., Marison, I.W. (1989). The use of calorimetry in biotechnology. In: Bioprocesses and Engineering. Advances in Biochemical Engineering/Biotechnology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009829

Download citation

  • DOI: https://doi.org/10.1007/BFb0009829

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51446-6

  • Online ISBN: 978-3-540-48132-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics