Recent developments in enzyme and microbial biotechnology — Strategies in bioprocess design

Conference paper
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 40)


Microorganisms have been used traditionally by industry as sources of natural products, or as sources of enzymes capable of mediating specific chemical transformations. This situation has changed radically in recent years, a time during which we have seen a dramatic increase in the number and range of potential biotechnological applications of enzymes and their genetically-engineered variants. An increasing number of enzymes, receptors and other proteins have now been structurally characterized, and their genes isolated as a basis for producing recombinant proteins for genetic analysis of their structure and function. These innovations have necessitated development of associated technologies for large-scale production of proteins in bioreactors, appropriate strategies for quality control, and new analytical tools for structural characterization of recombinant gene products. Some recombinant proteins are already in an advanced stage of development for use either as new-generation therapeutics, as target molecules for “intelligent” drug screening, or as biological components of biosensors. As the predictive power of protein model building improves, the diversity of applications of such technology will increase further as it becomes feasible to generate totally synthetic proteins with specifically-tailored properties.


Nuclear Magnetic Resonance Biological Component Nitrile Hydratase Protein Structure Determination Bioprocess Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fiechter A (1988) New Frontiers of Bioprocess Development: First Swiss-Japanese Meeting on Bioprocess Development, Interlaken, Switzerland, 25–27 July 1988 (s. Addendum, this work).Google Scholar
  2. 2.
    Asano Y, Tachibana M, Tani Y, Yamada H (1982) Agric. Biol. Chem. 46: 1175Google Scholar
  3. 3.
    Nagasawa T, Nanba H, Ryuno K, Takenkhi K, Yamada H (1987) Eur. J. Biochem. 162: 691Google Scholar
  4. 4.
    Nagasawa T, Ryuno K, Yamada H (1986) Biochem. Biophys. Res. Comm. 139: 1305Google Scholar
  5. 5.
    Nagasawa T, Mathew CD, Manger J, Yamada H (1989) Appl. Environ. Microbiol. (in press)Google Scholar
  6. 6.
    Yamashita T, Tonouchi N, Uozumi T, Beppu T (1987) Mol. Gen. Genetics 210: 462Google Scholar
  7. 7.
    Suzuki H, Humagai T, Echigo T, Tochikura T (1988) Biochem. Biophys. Res. Comm. 150: 33Google Scholar
  8. 8.
    Shirae H, Yokozeki K, Uchiyama M, Kubata K (1988) Agric. Biol. Chem. 52: 1777Google Scholar
  9. 9.
    Rink H, Liersch M, Sieber P, Meyer F (1984) Nucleic Acids. Res. 12: 6369Google Scholar
  10. 10.
    Bode W, Papamokos E, Djordje M, Seemueller U, Fritz H (1986) EMBO J 5: 813Google Scholar
  11. 11.
    Kline AD, Brown W, Wuethrich K (1986) J. Mol. Biol. 189: 377Google Scholar
  12. 12.
    Wagner G, Braun W, Havel TF, Schaumann T, Go N, Wuetherich K (1987) J. Mol. Biol. 196: 611Google Scholar
  13. 13.
    Clore GM, Gronenborn AM, James MNG, Kjaer M, McPhalen CA, Poulson FM (1987) Protein Eng. 1: 313Google Scholar
  14. 14.
    Braun W, Wider G, Lee KH, Wuethrich K (1983) J. Mol. Biol. 169: 921Google Scholar
  15. 15.
    Vasak M, Worgotter E, Wagner G, Kagi JHR, Wuethrich K (1987) J. Mol. Biol. 196: 711Google Scholar
  16. 16.
    Wuethrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  17. 17.
    Blank U, Ra C, Miller L, White K, Metzger H, Kinet J-P (1989) Nature 337: 187Google Scholar
  18. 18.
    Davis MM, Bjorkman PJ (1988) Nature 334: 395Google Scholar
  19. 19.
    Navia MA, Fitzgerald PMD, McKeever BM, Leu C-T, Heimbach JC, Herber WK, Signal IS, Darke PL, Springer JP (1989) Nature 337: 615Google Scholar
  20. 20.
    Wagner E, Covarrubias L, Stewart TA, Mintz B (1983) Cell 35: 647Google Scholar
  21. 21.
    Kurt-Jones EA, Hamberg S, Ohara J, Paul WE, Abbas AK (1987) J. Exp. Med. 166: 1774Google Scholar
  22. 22.
    Pouwels PH, Enger-Valk BE, Brammar WJ (1985) Cloning vectors. Elsevier, AmsterdamGoogle Scholar
  23. 23.
    Heinz DW, Liersch M, Braun NJ, Gruetter M (1988) New inibitory properties of Eglin-C after specific mutagenesis. In: Wittman-Liebold (ed) Methods in Protein Sequence Analysis: Proc. 7th Int. Conf. Protein Sequence Analysis (in press)Google Scholar
  24. 24.
    Leu FT-K, Fersht AR (1987) Nature 326: 811Google Scholar
  25. 25.
    Blundell TL, Sibanda BL, Sternberg MJE, Thornton JM (1987) Nature 326: 347Google Scholar
  26. 26.
    Jones TA, Thirup S (1986) EMBO J. 5: 819Google Scholar
  27. 27.
    Protein Engineering Research Institute (PERI). Osaka, Japan, Director: Dr. M. IkeharaGoogle Scholar
  28. 28.
    Morrison SL (1985) Science 229: 1202Google Scholar
  29. 29.
    Nishimura Y, Yokoyama M, Araki K, Ueda K, Ueda R, Kudo A., Watanabe T (1988) Cancer Res. 47: 999Google Scholar
  30. 30.
    Sun LK, Curtis P, Rakowicz-Szulczyunska E, Ghrayeb J, Chang N, Morrison SL, Koprowski H (1984) Proc. Nat. Acad. Sci. U.S.A. 84: 214Google Scholar
  31. 31.
    Williams GT, Neuberger MS (1986) Gene 43: 319Google Scholar
  32. 32.
    Gascoigne NRJ, Goodnow CC, Dudzik KL, Oi VT, Davis MM (1987) Proc. Nat. Acad. Sci. U.S.A. 84: 2936Google Scholar
  33. 33.
    Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Nature 321: 522Google Scholar
  34. 34.
    Lerner RA, Tramontano A (1987) Trends in Biol. Sci. 12: 427Google Scholar
  35. 35.
    Napper AD, Benkovic SJ, Tramontano A, Lerner RA (1987) Science 237: 1041Google Scholar
  36. 36.
    Rees AR, de la Paz P (1986) Trends in Biol. Sci. 11: 144Google Scholar
  37. 37.
    WHO Expert Committee on Biological Standardisation (1987) WHO Technical Report Series, WHO, Geneva, p 93Google Scholar
  38. 38.
    Ad hoc Working Party on Biotechnology/Pharmacy (1987) Trends in Biotechnol. 5: G1Google Scholar
  39. 39.
    Ad hoc Working Party on Biotechnology/Pharmacy (1988) Trends in Biotechnol. 6: G5Google Scholar
  40. 40.
    Bigee WL, Vanderlaan M, Fong SSN, Jensen RH (1983) Mol. Immunol. 20: 1353Google Scholar
  41. 41.
    Brewer SJ (1986) J. Chem. Technol. Biotechnol. 36: 367Google Scholar
  42. 42.
    Thomas AH (1988) Chemistry in Britain 24: 1031Google Scholar
  43. 43.
    WHO Study Group (1987) WHO Technical Report Series 747, WHO, Geneva, p 1Google Scholar
  44. 44.
    Goldfarb P (1986) J. Chem. Technol. Biotechnol. 36: 389Google Scholar
  45. 45.
    Dinarello CA (1974). In: Adams D, Edelson P, Koren H (eds) Methods for studying mononuclear phagocytes. Academic, New York, p 69Google Scholar
  46. 46.
    Rolfe P, Martin MJ (1988) Chemistry in Britain 24: 1026Google Scholar
  47. 47.
    Luong JHT, Mulchandani A, Guilbault GG (1988) Trends in Biotechnol. 6: 310Google Scholar
  48. 48.
    Rechnitz GA (1978) Chem. Eng. News 56: 56Google Scholar
  49. 49.
    Arnold MA, Rechnitz GA (1981) Anal. Chem. 53: 515Google Scholar
  50. 50.
    Arnold MA, Rechnitz GA (1987) In: Turner APF, Karube I, Wilson GS (eds) Biosensors: Fundamentals and applications. Oxford University Press, Oxford, p 30Google Scholar
  51. 51.
    Burstein C, Adamowicz E, Boucherit K, Rabouille C, Romette JL (1986) App. Biochem. Biotechnol. 12: 1Google Scholar
  52. 52.
    Wingard LB Jr (1987). In: Schmid RD, Guilbault GG, Karube I, Schmidt H-L, Wingard LB Jr (eds) Biosensors: International Workshop, GBF Monographs, Braunschweig, vol 10 p 133Google Scholar
  53. 53.
    Coughlin MP, Kiertan MPJ, Border PM, Turner APF (1988) J. Microb. Methods 8: 1Google Scholar
  54. 54.
    Kuan SS, Guilbault GG (1987). In: Turner APF, Karube I, Wilson GS (eds) Biosensors: Fundamentals and applications. Oxford University Press, Oxford, p 135Google Scholar
  55. 55.
    Clark LC Jr (1979) Methods Enzymol. 44: 2161Google Scholar
  56. 56.
    Koundelka M, Gernet S, de Rooij NF (1987) Voltommetry, a powerful tool for evaluation and process control of thin film electrodes. In: Transducers '87, Tokyo, p 41Google Scholar
  57. 57.
    Marison IW, von Stockar U (1987) Enzyme and Microb. Technol. 9: 33Google Scholar
  58. 58.
    Birou B, Marison IW, von Stockar U (1987) Biotechnol. Eng. 30: 650Google Scholar
  59. 59.
    Hanazoto Y, Shiono S (1983). In: Seiyama T (ed) Proc. Int. Meeting on Chemical Sensors, Fukuoka. Anal. Chem. Symp. Series, Elsevier, Amsterdam, vol 17 p 523Google Scholar
  60. 60.
    Adanielsson B, Lundstrom F, Winquist F, Mosbach K (1979) Anal. Lett. B12: 1189Google Scholar
  61. 61.
    Karube I, Kubo I (1987). In: Guilbault GG, Mascini M (eds) Analytical uses of immobilised biological compounds for detection, medical and industrial uses. Reidel, p 207Google Scholar
  62. 62.
    Karube I, Gotoh M (1987). In: Guilbault GG, Mascini M (eds) Analytical uses of immobilised biological compounds for detection, medical and industrial uses. Reidel, p 267Google Scholar
  63. 63.
    Roederer E, Baastians GJ (1983) Anal. Biochem. 55: 2333Google Scholar
  64. 64.
    Knight P (1989) Biotechnology 7: 175Google Scholar
  65. 65.
    Saiki RK, Gelford DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Science 239: 487Google Scholar
  66. 66.
    Li H, Gyllensten UB, Cui X, Saiki RK, Erlich HA, Arnheim N (1988) Nature 335: 414Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Department of Molecular Biology, Biotechnology SectionBaselSwitzerland

Personalised recommendations