On the definition and detection of structural change

  • B. Rustem
  • K. Velupillai
Part II: Research Reports
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 16)


Stochastic Differential Equation Elemental Unit Observation Model Jump Process Transformation Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Athans, M. "The Importance of Kalman Filtering Methods for Economic Systems", A.E.S.M., Vol. 3, 1, pp.49–64, (1974).Google Scholar
  2. [2]
    Balakrishnan, A.V. Stochastic Differential Systems, Springer Verlag, Berlin, (1973).Google Scholar
  3. [3]
    Benes, V. "Existence of Optimal Strategies Based on Specified Information, for a Class of Stochastic Decision Problems", SIAM J. Control, Vol.8, 3, pp. 179–188, (1970).Google Scholar
  4. [4]
    Boel, R. and Varaiya, P. "Optimal Control of Jump Processes", SIAM J. Control and Optimization, Vol.15, 1, pp.92–119, (1977).Google Scholar
  5. [5]
    Boel, R., Varaiya, P. and Wong, E. "Martingales on Jump Processes I: Representation Results", SIAM J. Control, Vol.13, 5, pp. 999–1021, (1975).Google Scholar
  6. [6]
    Brown, R.L., Durbin, J. and Evans, J.M. "Techniques for Testing the Constancy of Regression Relationships over Time", JRSS, Ser. B, 2, pp.149–192, (1975).Google Scholar
  7. [7]
    Champsaur, P., Dreze, J. and Henry, C. "Stability Theorems with Economic Applications", Econometrica, Vol.45, 2, pp.273–294, (1977).Google Scholar
  8. [8]
    Christ, C.F. Econometric Models and Methods, John Wiley & Sons Inc., New York, (1966).Google Scholar
  9. [9]
    Davis, M.H.A. "The Representation of Martingales of Jump Processes", SIAM J. Control and Optimization, Vol.14, 4, pp.623–638, (1975).Google Scholar
  10. [10]
    Davis, M.H.A. Linear Estimation and Stochastic Control, Chapman and Hall, London, (1977).Google Scholar
  11. [11]
    Fleming, W.H. and Rishel, R.W. Deterministic and Stochastic Optimal Control, Springer-Verlag, Heidelberg, (1975).Google Scholar
  12. [12]
    Gikhman, I.I. and Skorohod, A.V. Stochastic Differential Equations, Springer-Verlag, Heidelberg, (1972).Google Scholar
  13. [13]
    Girsanov, I.V. "On Transforming a Certain Class of Stochastic Processes by Absolutely Continuous Substitution of Measures", Theory of Probability and its Applications, Vol.5, pp.285–301, (1960).Google Scholar
  14. [14]
    Hirsch, M.W. and Smale, S. Differential Equation, Dynamical Systems, and Linear Algebra, Academic Press, New York and London, (1974).Google Scholar
  15. [15]
    Jacod, J. "Multivariate Point Processes: Predictable Projection, Radon-Mikodym Derivatives, Representation of Martingales", Z. Mahrscheinlichkeits theorie und Verw. Gebiete, Vol. 31, pp. 235–253, (1975).Google Scholar
  16. [16]
    Jazwinski, A.H. Stochastic Processes and Filtering Theory, Academic Press, New York, (1970).Google Scholar
  17. [17]
    Kalman, R.E. "A New Approach to Linear Filtering and Production Problems", Trans. ASME, Ser. D.J. Basic Eng. Vol.82, pp.394–400, (1960).Google Scholar
  18. [18]
    Luenberger, D.G. Optimization by Vector Space Methods, John Wiley and Sons Inc., New York and London, (1969).Google Scholar
  19. [19]
    Rustem, B. and Velupillai, K., "Recursive Parameter Estimation Using the Kalman Filter, (in preparation).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • B. Rustem
    • 1
  • K. Velupillai
    • 2
  1. 1.Department of EconomicsLondon School of EconomicsLondonU.K.
  2. 2.Nationalekonomiska InstitutionenLunds UniversitetLund 5Sweden

Personalised recommendations