Advertisement

A variational inequality for a partially observed stopping time problem

  • Michael Kohlmann
  • Raymond Rishel
Part II: Research Reports
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 16)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Anderson and A. Friedman, "A Quality Control Problem and Quasi-Variational Inequalities", Archive for Rational Mechanics and Analysis 63 (1973), pp. 205–252.Google Scholar
  2. [2]
    A. Bensoussan and J.L. Lions, "Temps d'Arrêt et Contrôle" Impulsionel: Inéquations Variationelles et Quasi-Variationelles d'Évolutions", Cahier de Math. de la Décision, no. 7523, Univ. Paris IX.Google Scholar
  3. [3]
    Ph. Courrège and P. Priouret, "Temps d'Arrêt d'une Fonction aléatoire:Relations d'Équivalence associées et Propriétés de Décompositions", Publications de l'Institut de Statistique de l'Université de Paris XIV (1965), pp. 245–274.Google Scholar
  4. [4]
    A. Friedman, "Stochastic Differential Equations and Applications", Vol. 1, (1975), Academic Press.Google Scholar
  5. [5]
    A. Friedman and M. Robin, "The Free Boundary for Variational Inequalities with Nonlocal Operators", SIAM J. Control and Optimization 16 (1978), pp. 347–362.Google Scholar
  6. [6]
    M. Kohlmann and R. Rishel, "Strong Conditioning", preprint University of Bonn (1978), submitted.Google Scholar
  7. [7]
    R. Rishel, "A Minimum Principle For Controlled Jump Processes", in Control Theory, Numerical Methods and Computer Systems Modelling, Springer Lecture Notes in Economics and Mathematical Systems 107 (1975), Springer Verlag.Google Scholar
  8. [8]
    R. Rishel, "Controls Optimal From Time tonwards and Dynamic Programming For Systems of Controlled Jump Processes", Mathematical Programming Study 6 (1976), pp. 125–153.Google Scholar
  9. [9]
    R. Rishel, "State Estimation for Partially Observed Jump Processes", to appear in J. Mathem. Analysis Appl.Google Scholar
  10. [10]
    R. Rudemo, "State Estimation for Partially Observed Jump Markov Processes", J. Mathem. Analysis Appl. 44 (1973), pp. 581–611.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Michael Kohlmann
    • 1
  • Raymond Rishel
    • 2
  1. 1.Institute for Applied MathematicsUniversity of BonnFRG
  2. 2.University of KentuckyLexingtonUSA

Personalised recommendations