A non-linear martingale problem

  • Th. Eisele
Part II: Research Reports
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 16)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bismut, J.-M.: Théorie probabiliste du contrôle des diffusions. Mem.Amer.math.Soc. 163, Providence, 1976.Google Scholar
  2. 2.
    Bismut, J.-M.: Control of Jump Processes and Applications. Bull.Soc.math.France 106, 25–60, (1978).Google Scholar
  3. 3.
    Ikeda, N., Nagasawa, M. and Watanabe, S.: Branching MarcovProcesses I–III. J.Math.Kyoto Univ. 8, 233–278 and 365–410, (1968); 9, 95–160 (1969).Google Scholar
  4. 4.
    Jacod, J.: Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales. Z. Wahrscheinlichkeitstheorie verw.Gebiete 31, 235–253 (1975).Google Scholar
  5. 5.
    Jacod, J.: Calcul Stochastique et Problèmes de Martingales. (to appear in Lecture Notes in Mathematics, Berlin, Heidelberg, New York: Springer).Google Scholar
  6. 6.
    Nagasawa, M.: Basic Models of Branching Processes. ISI NewDelhi (1977).Google Scholar
  7. 7.
    Silverstein, M.L.: Markov Processes with Creation of Particles. Z.Wahrscheinlichkeitstheorie verw.Gebiete 9, 235–257 (1968).Google Scholar
  8. 8.
    Skorokhod, A.V.: Branching Diffusion Processes. Theory Prob.Appl. 8, 492–497 (1964).Google Scholar
  9. 9.
    Stroock, D.W.: Diffusion Processes Associated with Lévy Generators. Z.Wahrscheinlichkeitstheorie verw.Gebiete 32, 209–244 (1975).Google Scholar
  10. 10.
    Stroock, D.W. and Varadhan, S.R.S.: Diffusion Processes with Continuous Coefficients I,II. Commun. Pure Appl. Math. XXII, 345–400 and 479–530 (1969).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Th. Eisele
    • 1
  1. 1.Institut für Angewandte MathematikHeidelberg

Personalised recommendations