Advertisement

Interaction between stochastic differential equations and partial differential equations

  • Avner Friedman
Part I: Survey Lectures
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 16)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. F. Anderson, Optimal stopping in a reliability problem, Stochastic Analysis, pp. 1–23, Academic Press, New York, 1978.Google Scholar
  2. [2]
    R. F. Anderson and A. Friedman, A quality control problem and quasi variational inequalities, J. Rat. Mech. Analys., 63 (1977), 205–252.Google Scholar
  3. [3]
    R. F. Anderson and A. Friedman, Multi-dimensional quality control problems and quasi variational inequalities, Trans. Amer. Math. Soc., to appear.Google Scholar
  4. [4]
    R. F. Anderson and S. Orey, Small random perturbation of dynamical systems with reflecting boundary, Nagoya Math. J., 60 (1976), 189–216.Google Scholar
  5. [5]
    A. Bensoussan, H. Brezis and A. Friedman, Estimates on the free boundary for quasi variational inequalities, Comm. in P.D.E., 2 (1977), 297–321.Google Scholar
  6. [6]
    A. Bensoussan and A. Friedman, Nonzero sum stochastic differential games with stopping times and new free boundary problems, Trans. Amer. Math. Soc., 231 (1977), 275–327.Google Scholar
  7. [7]
    A. Bensoussan and J. L. Lions, Problèmes de temps d'arrêt optimal et inéquations variationnelles paraboliques, Applicable Analysis, 3 (1973), 267–294.Google Scholar
  8. [8]
    A. Bensoussan and J. L. Lions, Nouvelle methodes en contrôle impulsionnel, Appl. Math. Optimization, 1 (1975), 289–312.Google Scholar
  9. [9]
    A. Bensoussan and J. L. Lions, Sur le contrôle impulsionnel et les inéquations quasi variationnelles d'evolution, C.R. Acad. Sci. Paris, 280 (1975), 1049–1053.Google Scholar
  10. [10]
    H. Brezis, Problèmes unilatéraux, J. Math. pures et appl., 51 (1972), 1–168.Google Scholar
  11. [11]
    L. A. Caffarelli and A. Friedman, Regularity of the solution of the quasi variational inequality for the impulse control problem, Comm. in P.D.E., 3 (1978), 745–753.Google Scholar
  12. [12]
    L. A. Caffarelli and A. Friedman, Regularity of the solution of the quasi variational inequality for the impulse control problem II, Comm. in P.D.E., 3 (1978), to appear.Google Scholar
  13. [13]
    A. Devinatz and A. Friedman, Asymptotic behavior of the principal eigenfunction for singularly perturbed Dirichlet problem, Indiana Univ. Math. J., 27 (1978), 143–157.Google Scholar
  14. [14]
    A. Devinatz and A. Friedman, The asymptotic behavior of a singularly perturbed Dirichlet problem, Indiana Univ. Math. J., 27 (1978), 527–537.Google Scholar
  15. [15]
    C. L. Evans and A. Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equation, to appear.Google Scholar
  16. [16]
    W. H. Fleming, Exist probabilities and optimal stochastic control, to appear.Google Scholar
  17. [17]
    M. I. Freidlin, On the factorization of nonnegative definite matrices, Theor. Probability Appl., 13 (1968), 354–358.Google Scholar
  18. [18]
    A. Friedman, Stochastic games and variational inequalities, Archive Rat. Mech. Analys., 51 (1973), 321–346.Google Scholar
  19. [19]
    A. Friedman, The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with small parameter in the highest derivatives, Indiana Univ. Math. J., 22 (1973), 1005–1015.Google Scholar
  20. [20]
    A. Friedman, Small random perturbations of dynamical systems and applications to parabolic equations, Indiana Univ. Math. J., 24 (1974), 533–553; Erratum, ibid, 25 (1975), p. 903.Google Scholar
  21. [21]
    A. Friedman, Stochastic Differential Equations and Applications, vol. 2, Academic Press, New York, 1976.Google Scholar
  22. [22]
    A. Friedman and M. A. Pinsky, Dirichlet problem for degenerate elliptic equations, Trans. Amer. Math. Soc., 186 (1973), 359–383.Google Scholar
  23. [23]
    J. L. Joly, U. Mosco and G. M. Troianiello, On the regular solution of a quasivariational inequality connected to a problem of stochastic impulse control, J. Math. Anal. Appl., 61 (1977), 357–369.Google Scholar
  24. [24]
    S. Kamin, Elliptic perturbation of a first order operator with a singular point, Indiana Univ. Math. J., to appear.Google Scholar
  25. [25]
    S. Kamin, to appear.Google Scholar
  26. [26]
    J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math., 20 (1967), 797–872.Google Scholar
  27. [27]
    N. V. Krylov, Control of Markov processes and W-spaces, Math. SSSR-Izv., 5 (1971), 233–266.Google Scholar
  28. [28]
    N. V. Krylov, Control of a solution of stochastic integral equation, Theor. Probability Appl., 17 (1972), 114–130.Google Scholar
  29. [29]
    B. J. Matkowsky and Z. Schuss, On the exit problem for randomly perturbed dynamical systems, SIAM J. Appl. Math., 33 (1977), 365–382.Google Scholar
  30. [30]
    M. A. Pinsky, A note on degenerate diffusion processes, Theor. Probability Appl., 14 (1969), 502–506.Google Scholar
  31. [31]
    M. A. Pinsky, Stochastic stability and the Dirichlet problem, Comm. Pure Appl. Math., 27 (1974), 311–350.Google Scholar
  32. [32]
    D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math., 25 (1972), 651–713.Google Scholar
  33. [33]
    S. R. S. Varadhan, Diffusion processes in a small time interval, Comm. Pure Appl. Math., 20 (1967), 659–685.Google Scholar
  34. [34]
    A. D. Ventcel, On the asymptotic behavior of the greatest eigenvalue of a second order elliptic differential operator with a small parameter in the highest derivatives, Soviet Math. Dokl., 13 (1972), 13–17.Google Scholar
  35. [35]
    A. D. Ventcel, On the asymptotic behavior of the first eigenvalue of a differential operator of the second order with small parameter in the highest derivatives, Theor. Probability Appl., 20 (1975), 599–602.Google Scholar
  36. [36]
    A. D. Ventcel and M. I. Freidlin, On small random perturbations of dynamical systems, Russian Math. Surveys, 25 (1970), 1–56.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Avner Friedman
    • 1
  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations