Skip to main content

Recent progress in parallel stochastic approximations

  • Estimation
  • Chapter
  • First Online:
Topics in Stochastic Systems: Modelling, Estimation and Adaptive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 161))

Abstract

Parallel recursive algorithms of stochastic approximation type are discussed. The basic idea is to utilize a collection of parallel processors in lieu of using a single one alone as in the classical algorithms. The processors compute and communicate with each other asynchronously. By asynchronous implementations, we mean that each processor updates on its own pace, and uses the most recently received information from other processors. Several procedures are dealt with. These include distributed communicating schemes via convexifications, parallel algorithms with interacting processors and renewal type of computation times, and real time implementable procedures with pipeline arrangements. It appears that from the closed connection between real world applications and mathematical theories, the study of parallel stochastic approximation methods gains not only much of its special appeal, but also much of its intrinsic tension. The main emphasis and interest are the asymptotic properties of the algorithms. The parallel interacting algorithm and its variation are used as representatives for illustrating various limiting results. Convergence and rate of convergence issues are addressed, and robustness analysis is carried out.

This research has been supported in part by the National Science Foundation under grant DMS-8814624, and in part by the Institute for Mathematics and its Applications with fund provided by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Albert and L.A. Gardner, Stochastic Approximation and Nonlinear Regression, MIT Press, Cambridge, MA, 1967.

    Google Scholar 

  2. A. Benveniste, M. Metivier and P. Priouret, Algorithmes Adaptatifs et Approximations Stochastiques, Masson, Paris, 1987.

    Google Scholar 

  3. D.P. Bertsekas, Distributed computation of fixed points, Mathematical Programing 27 (1983), 107–120.

    Google Scholar 

  4. D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computing, Prentice-Hall, New Jersey, 1989.

    Google Scholar 

  5. D.P. Bertsekas and J.N. Tsitsiklis, Parallel and distributed iterative algorithms: A selective survey, Technical Report, Laboratory for Information and Decision Systems, LIDS-P-1835, MIT, 1988.

    Google Scholar 

  6. P. Billingsley, Convergence of Probability Measures, J. Wiley & Sons, New York, 1968.

    Google Scholar 

  7. G.B. Blankenship and G.C. Papanicolaou, Stability and control of stochastic systems with wide band noise, SIAM J. Appl. Math. 34 (1978), 437–476.

    Article  Google Scholar 

  8. P. E. Caines, Linear Stochastic Systems, J. Wiley, New York, 1988.

    Google Scholar 

  9. D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra and Appl. 2 (1969), 199–222.

    Article  Google Scholar 

  10. H.F. Chen, Recursive Estimation and Control for Stochastic Systems, J. Wiley, New York, 1985.

    Google Scholar 

  11. H.F. Chen, L. Guo and A.J. Gao, Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds, Stochastic Process. Appl. 27 (1988), 217–231.

    Article  Google Scholar 

  12. H.F. Chen and Y.M. Zhu, Stochastic approximation procedures with randomly varying truncations, Scientia Sinica (series A) XXIX (1986), 914–926.

    Google Scholar 

  13. P. Dupuis and H.J. Kushner, Stochastic approximation and large deviations: upper bounds and w.p.1 convergence, SIAM J. Control Optim. 27 (1989), 1108–1135.

    Article  Google Scholar 

  14. Yu. Ermoliev, Stochastic quasigradient Methods and their applications to system optimization, Stochastics 9 (1983), 1–36.

    Google Scholar 

  15. S. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence, J. Wiley & Sons, New York, 1986.

    Google Scholar 

  16. V. Fabian, On asymptotic normality in stochastic approximation, Ann. Math. Statist. 39 (1968), 1327–1332.

    Google Scholar 

  17. L. Gerencsér, Rigorous results in the theory of recursive identification, in this volume.

    Google Scholar 

  18. L. Gerencsér, On a class of mixing processes, Stochastics 26 (1989), 165–191.

    Google Scholar 

  19. G. Goodwin, P. Ramadge and P. Caines, Discrete time stochastic adaptive control, SIAM J. Control Optim. 19 (1981), 829–853.

    Article  Google Scholar 

  20. A.J. Gao, Y.M. Zhu and G. Yin, Joint robustness on noise and Liapunov function for parallel stochastic approximation algorithms, Preprint, 1989.

    Google Scholar 

  21. J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann. Math. Statist. 23 (1952), 462–466.

    Google Scholar 

  22. P.R. Kumar and P.P. Varaiya, Stochastic Systems: Estimation, Identification and Adaptive Control, Prentice-Hall, Englewood Cliffts, NJ, 1986.

    Google Scholar 

  23. H.J. Kushner, Stochastic approximation with discontinuous dynamics and state dependent noise: w.p.l and weak convergence, J. Math. Anal. Appl. 82 (1981), 527–542.

    Article  Google Scholar 

  24. H.J. Kushner, Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.

    Google Scholar 

  25. H.J. Kushner and D.S. Clark, Stochastic Approximation for Constrained and Unconstrained Systems, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  26. H.J. Kushner and H. Huang, Asymptotic properties of stochastic approximations with constant coefficients, SIAM J. Control Optim. 19 (1981), 86–105.

    Google Scholar 

  27. H.J. Kushner and A. Shwartz, An invariant measure approach to the convergence of stochastic approximations with state-dependent noise, SIAM J. Control Optim. 22 (1984), 13–27.

    Article  Google Scholar 

  28. H.J. Kushner and G. Yin, Asymptotic properties of distributed and communicating stochastic approximation algorithms, SIAM J. Control Optim. 25 (1987), 1266–1290.

    Article  Google Scholar 

  29. H.J. Kushner and G. Yin, Stochastic approximation algorithms for parallel and distributed processing, Stochastics 22 (1987), 219–250.

    Google Scholar 

  30. T.L. Lai and H. Robbins, Consistency and asymptotic efficiency of slope estimates in stochastic approximation schemes, Z. Wahr. 56 (1981), 329–360.

    Google Scholar 

  31. S. Li and T. Basar, Asymptotic agreement and convergence of stochastic algorithm, IEEE Tran. Automat. Control AC-32 (1987), 612–618.

    Google Scholar 

  32. L. Ljung, Analysis of recursive stochastic algorithms, IEEE Trans. Automat. Control AC-22 (1977), 551–575.

    Article  Google Scholar 

  33. L. Ljung and T. Söderström, Recursive identification, MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  34. M. Metivier and P. Priouret, Applications of a Kushner and Clark Lemma to general classes of stochastic algorithms, IEEE Trans. Inform. Theory IT-30 (1984), 140–151.

    Google Scholar 

  35. W.L. Miranker, A survey of parallelism in numerical analysis, SIAM Review 13 (1971), 524–547.

    Article  Google Scholar 

  36. M.B. Nevel'son and R.Z. Khas'minskii, Stochastic Approximation and Recursive Estimation, Translation of Math. Monographs, v47, AMS, Providence, 1973.

    Google Scholar 

  37. G. Ch. Pflug, Stochastic minimization with constant step-size: asymptotic laws, SIAM J. Control Optim. 24 (1986), 655–666.

    Article  Google Scholar 

  38. B.T. Polyak, Convergence and convergence rate of iterative stochastic algorithms, I, II, Automatic Remote Control 38 (1978), 537–542.

    Google Scholar 

  39. B.T. Polyak, New stochastic approximation type procedures, to appear in Automatic Remote Control.

    Google Scholar 

  40. Yu. V. Prohorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157–214.

    Article  Google Scholar 

  41. G.C. Papanicolaou, D. Stroock and S.R.S. Varadhan, Martingale approach to some limit theorems, Proc. of the 1976 Duke Univ. Conference on Turbulence, M. Reed ed., Duke University Mathematics Series, vol. 3, Durham, NC, 1977.

    Google Scholar 

  42. M.J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New York, 1987.

    Google Scholar 

  43. H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist. 22 (1951), 400–407.

    Google Scholar 

  44. R.Y. Rubinstein, Monte Carlo Optimization and Sensitivity of Queueing Networks, J. Wiley & Sons, New York, 1986.

    Google Scholar 

  45. D. Ruppert, A Newton-Raphson version of the multivariate Robbins-Monro Procedure, Ann. of Statist. 13 (1985), 236–245.

    Google Scholar 

  46. J. Sacks, Asymptotic distribution of stochastic approximation procedures, Ann. Math. Statist. 29 (1958), 159–167.

    Google Scholar 

  47. A.V. Skorohod, Limit theorems for stochastic processes, Theory Probab. Appl. 1 (1956), 261–290.

    Article  Google Scholar 

  48. J. Tsitsiklis, Problem in decentralized decision making and computation, Ph.D thesis, Elect. Eng. Dept., MIT, Cambridge, MA, 1984.

    Google Scholar 

  49. J.N. Tsitsiklis, D.P. Bertsekas and M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Trans. Automat. Control AC-31 (1986), 803–812.

    Article  Google Scholar 

  50. Ya. Z. Tsypkin, Adaptation and Learning in Automatic Systems, Academic Press, New York, 1971.

    Google Scholar 

  51. J.H. Venter, An extension of the Robbins-Monro procedure, Ann. Math. Statist. 38 (1967), 181–190.

    Google Scholar 

  52. M.T. Wasan, Stochastic Approximation, Cambridge Press, London, 1969.

    Google Scholar 

  53. R.B. Washburn and D. Teneketzis, Asymptotic agreement among communicating decision makers, Stochastics 13 (1984), 103–129.

    Google Scholar 

  54. C.Z. Wei, Multivariate adaptive stochastic approximation, Ann. Statist. 15 (1987), 1115–1130.

    Google Scholar 

  55. G. Yin, A stopping rule for the Robbins-Monro method, J. Optim. Theory. Appl. 67 (1990), 151–173.

    Google Scholar 

  56. G. Yin and Y.M. Zhu, On parallel processing approach to adaptive stochastic approximation, Proc. 27th Conference on Decision and Control.

    Google Scholar 

  57. G. Yin and Y.M. Zhu, On w.p.l convergence of a parallel stochastic approximation algorithm, Probab. Eng. Inform. Sci. 3 (1989), 55–75.

    Google Scholar 

  58. G. Yin and Y.M. Zhu, On robustness of the Robbins-Monro method for parallel processing, System Control Lett. 12 (1989), 77–86.

    Article  Google Scholar 

  59. G. Yin and Y.M. Zhu, On H-valued Robbins-Monro processes, Journal of Multivariate Analysis, Vol. 34 (1990), 116–140.

    Article  Google Scholar 

  60. Y.M. Zhu and G. Yin, Stochastic approximation in real time: pipelining computation and communication, Preprint, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

L. Gerencséer P. E. Caines

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this chapter

Cite this chapter

Yin, G. (1991). Recent progress in parallel stochastic approximations. In: Gerencséer, L., Caines, P.E. (eds) Topics in Stochastic Systems: Modelling, Estimation and Adaptive Control. Lecture Notes in Control and Information Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009304

Download citation

  • DOI: https://doi.org/10.1007/BFb0009304

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54133-2

  • Online ISBN: 978-3-540-47435-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics