Skip to main content

Symmetries in biology

  • II. Symmetry and Structure
  • Conference paper
  • First Online:
Physics in Living Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 284))

  • 262 Accesses

Abstract

This topic being extremely large, this presentation is only a key to literature, with some indications on recent trends in the study of symmetries and symmetry breakings in biological morphogenesis. Symmetry problems are essential in condensed matter physics and, for instance, in research on solid and liquid crystals. Living matter can be considered as a mosaic of solids, of liquids and of a large series of intermediate states, which often are liquid crystals or close analogues of liquid crystals.

Is it possible to develop symmetry studies on biological systems, as do physicists In their own field? This question was given a positive answer at the molecular level by Louis Pasteur in the nineteenth century and all further studies have confirmed this pioneer work.

The problems considered here concern higher levels of organization and morphogenesis of structures elaborated by considerable sets of cells. For instance, the shapes of organs and of individuals are elaborated mainly by the production of fibrous networks made of various biopolymers. Most classical examples of these networks are found in the integument, in the connective tissue and in the skeletal system. Morphogenesis of such networks results from the activity of cells secreting polymers and from a self-assembly mechanism, resembling a transition from an isotropic state to a liquid crystal In concentrated solutions of these polymers. These ordered secretions are stabilized either by chemical cross-linking between polymers or by microcrystals forming within the liquid crystalline phase. This gives solid or supple systems, showing In their organization most structures and symmetries of liquid crystals.

Liquid crystals contain several types of singular points and lines, whose distribution is often regular and this leads to the differentiation of characteristic textures and shapes. Such architectures also exist in the biological counterpart of liquid crystals. Chiral components and helical polymers are essential In the formation of highly elaborated morphologies of liquid crystals and this is probably one reason why enantiomers rather than racemates or non active components are adopted In living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. L. Pasteur, Oeuvres Complètes, 1922, Masson, Paris.

    Google Scholar 

  2. E. Haeckel, Report on the Scientific Results of the Voyage of H. M. S. Challenger, 18, H. S. M. O., 1887, Leipzig and Wien, 1899; Kunstformen der Natur. Verlag des Bibliographischen Institut, Leipzig and Wien, 1899.

    Google Scholar 

  3. J. F. Nye, Physical Properties of Crystals. 1957, Clarendon Pr., Oxford.

    MATH  Google Scholar 

  4. P. Curie, Oeuvres Complètes. 1908, Paris, Gauthier-Villars et 1984, Paris, Edition des Archives Contemporaines.

    Google Scholar 

  5. E. Havinga, Biochim., Blophys. Acta. 1954, 13, 11.

    Google Scholar 

  6. A. Amariglio and H. Amariglio, X. Duval, Ann. Chim., 1968, 3, 5.

    Google Scholar 

  7. D'Arcy W. Yhompson, On Growth and Form, 1917, Cambridge, The Univ. Pr.

    Google Scholar 

  8. A.J. Dalton and F. Haguenau ed., Ultrastructure of Animal Viruses and Bacteriophages, an Atlas. 1973, Acad. Pr., N.-Y. and London.

    Google Scholar 

  9. H. Mohl, Ann. Sci. Nat., 1835, Paris, sér.II, 3 148–188; J. Muller, Ann. Missouri Bot. Gard., 66, 593–632.

    Google Scholar 

  10. Y. Bouligand, in Symmetries and Broken Symmetries in Condensed Matter Physics, 1981, Boccara N. ed., IDSET, Paris.

    Google Scholar 

  11. P.-G. de Gennes, The Physics of Liquid Crystals, 1974, Clar. Pr. Oxford.

    Google Scholar 

  12. H. Kelker and R. Hatz, Handbook of Liquid Crystals, 1980, Verlag Chemie, Weinheim.

    Google Scholar 

  13. Y. Bouligand, Tissue & Cell. 1972, 4 189–217.

    Article  Google Scholar 

  14. Y. Bouligand, Solid States Physics, 1978, Suppl. 14, 259–294.

    Google Scholar 

  15. Y. Bouligand, in Liquid Crystalline Order In Polymers, 1978, A. Blumstein ed., Acad. Pr.N.-Y., London., 261–297.

    Google Scholar 

  16. G.A. Uebbels, J.J. Bezem and C.P. Raven, J. Embryol. Exp. Morph., 1969, 21, 445.

    Google Scholar 

  17. D. Chapman, Ann. New-York Acad. Sciences, 1966, 137, 745.

    Article  ADS  Google Scholar 

  18. S.J. Singer and G. Nicolson, Science, 1972, 175, 720.

    Article  ADS  Google Scholar 

  19. Robinson C., Tetrahedron, 1961, 13, 219.

    Article  Google Scholar 

  20. Y. Bouligand, M.-O. Soyer and S. Pulseux-Dao., Chromosoma, 1968, 24, 251.

    Article  Google Scholar 

  21. L.S. Lerman, Cold Spring Harbor Symp. Quant. Biol., 1973, 38, 59.

    Google Scholar 

  22. F. Livolant, Eur. J. Cell Biol., 1984, 33, 300–311.

    Google Scholar 

  23. R.L. Rill, Proc. Nat. Acad. Sci. (U.S.A.), 1986, 83, 342.

    Article  ADS  Google Scholar 

  24. F. Livolant, Tissue & Cell. 1984, 16, 535–555.

    Article  Google Scholar 

  25. E.W. April, P. W. Brandt and G.F. Elliott, J. Cell Biol., 1971, 51, 72–82; 1972, 53, 53-65.

    Article  Google Scholar 

  26. G.F. Elliot and E. Rome, Mol. Crystals and Liq. Ccystals, 1969, 8, 215–219.

    Article  Google Scholar 

  27. D.A. Torchia and D.L. van der Hart, J. Mol. Biol, 1976, 104, 315–321.

    Article  Google Scholar 

  28. J. Woodhead-Galloway, D.W.L. Hukins, D.P. Knight, P.A. Machin and J.B. Weiss, J. Mol. Biol., 1878, 118, 567–578.

    Article  Google Scholar 

  29. Y. Bouligand, J.-P. Denèfle, J.-P. Lechaire and M. Maillard, Biol. Cell. 1985, 54, 143–162.

    Google Scholar 

  30. Y. Bouligand, J. Physique, 1972-1974, 33,525–547, 715–736; 34, 603–614, 1011–1020; 35, 215–235, 959–981.

    Article  Google Scholar 

  31. Y. Bouligand, J. Physique, 1975, 36, C1, 331–336.

    Google Scholar 

  32. S. Melboom, J.P. Sethna, P.W. Anderson and W.F. Brinkman, Phys. Rev. Lett., 1981, 46, 1216–1219.

    Article  ADS  Google Scholar 

  33. F. Livolant, J. Physique, 1987,In the press.

    Google Scholar 

  34. L. Le Pescheux, private communication, manuscript in preparation.

    Google Scholar 

  35. Y. Bouligand, in Mesomorphic Order in Polymers, A. Blumsteln ed., ACS Symp. Ser., 76, 237–247.

    Google Scholar 

  36. L.E.R. Picken, The Organization of Cells and other Organisms, 1961, Clarendon Pr., Oxford.

    Google Scholar 

  37. Y. Le Quang-Trong and Y. Bouligand, Bull. Soc. Zool. Fr., 1976,101, 637–645.

    Google Scholar 

  38. Y. Bouligand and M.-M. Giraud-Guille, 1985, in Biology of Invertebrate and Lower Invertebrate Collagens, 1985, A. Bairati and R. Garrone eds., Plenum.

    Google Scholar 

  39. W. Bloom and Don W. Fawcett, A Textbook of Histology, 10th edition, 1975, W.B. Saunders.

    Google Scholar 

  40. R. Olson, in Handbook of Physiology, Circulation, 1, Chapt. 10, 199-235.

    Google Scholar 

  41. A. Lehninger, in Biochemistry. The Molecular Basis of Cell Structure and Function, 2nd ed., 1975,Worth Publ. N.-Y.

    Google Scholar 

  42. P. Favard and Y. Bouligand, in ‘La Morphogenèse, de la Biologie aux Mathématiques, 1980, Maloine, Paris, 101–113.

    Google Scholar 

  43. Y. Bouligand, La Vie des Sciences, C. R. Acad. Sci., Paris, 1985, 2, 121–140.

    MathSciNet  Google Scholar 

  44. Y. Bouligand, in Physics of Defects, 1981, Balian et al. eds., Les Houches Session M North Holland Publ. Co., 780–811.

    Google Scholar 

  45. F. Grandjean, Complete Acarological Work, 1972-1976, vol.1-7, L. van der Hammen ed., W. Junk, B.V. Publ., Antiquariaat. The Hague.

    Google Scholar 

  46. Y. Bouligand, in Ontogenèse et Evolution, 1986, Coll. Intern. CNRS, Dijon. *** DIRECT SUPPORT *** A0124056 00002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dionys Baeriswyl Michel Droz Andreas Malaspinas Piero Martinoli

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Bouligand, Y. (1987). Symmetries in biology. In: Baeriswyl, D., Droz, M., Malaspinas, A., Martinoli, P. (eds) Physics in Living Matter. Lecture Notes in Physics, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009206

Download citation

  • DOI: https://doi.org/10.1007/BFb0009206

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18192-7

  • Online ISBN: 978-3-540-47803-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics