Skip to main content

The protein as a physics laboratory

  • I. Dynamics of Proteins and Evolution
  • Conference paper
  • First Online:
Physics in Living Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 284))

  • 247 Accesses

Abstract

Why should physicists be interested in biomolecules? One reason is that physics and in particular physical techniques have had, and still have, a great impact on biological sciences. A prime example is X-ray diffraction which in the hands of Max Perutz and John Kendrew led to the elucidation of the three-dimensional structure of proteins. A second reason is the fact that proteins are beautifully designed laboratories in which many physics problems can be studied. A few years ago I had dinner with Stan Ulam at the Los Alamos Inn. After telling him about our work he said: “I understand what you are saying. Ask not what physics can do for biology, ask what biology can do for physics.” In these notes I will discuss two areas, complexity and reactions, where experiments on proteins provide new information. Both of these areas link biomolecules to physics and chemistry and both contain many unsolved and challenging problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Stryer, Biochemistry, W. H. Freeman and Company, San Francisco, 1981.

    Google Scholar 

  2. H. Frauenfelder, Helv. Phys. Acta 7, 165–187 (1984).

    Google Scholar 

  3. R. H. Austin, K. W. Beeson, L. Eisenstein, and H. Frauenfelder, Biochemistry 14, 5355–5373 (1975).

    Article  Google Scholar 

  4. G. H. Fleming, Ann. Rev. Phys. Chem. 37, 81–104 (1986).

    Article  ADS  Google Scholar 

  5. Ultrafast Phenomena IV, D. H. Austin and K. B. Eisenthal, Eds., Springer 1984.

    Google Scholar 

  6. Ultrafast Phenomena V, Springer, 1986.

    Google Scholar 

  7. R. H. Austin, K. W. Beeson, S. S. Chan, P. G. Debrunner, R. Downing, L. Eisenstein, H. Frauenfelder, and T. M. Nordlund, Rev. Sci. Instr. 47, 445–447 (1976).

    Article  ADS  Google Scholar 

  8. R. E. Dickerson and I. Geis, Hemoglobin: Structure, Function, Evolution and Pathology, Benjamin/Cummings, 1983.

    Google Scholar 

  9. H. Frauenfelder, G. A. Petsko, and D. Tsernoglou, Nature 280, 558–563 (1979).

    Article  ADS  Google Scholar 

  10. H. Hartmann, F. Parak, W. Steigemann, G. A. Petsko, D. Ringe Ponzi, and H. Frauenfelder, Proc. Natl. Acad. Sci. USA 79, 4967–4971 (1982).

    Article  ADS  Google Scholar 

  11. G. A. Petsko and D. Ringe, Ann. Rev. Biophys. Bioeng. 13, 331–371 (1984).

    Article  Google Scholar 

  12. H. Frauenfelder, H. Hartmann, M. Karplus, I. D. Kuntz, Jr., J. Kuriyan, F. Parak, G. A. Petsko, D. Ringe, R. F. Tilton, Jr., M. L. Connolly, and N. Max, Biochemistry, in press.

    Google Scholar 

  13. R. Stetzkowski, R. Banerjee, M. C. Marden, D. K. Beece, S. F. Bowne, W. Doster, L. Eisenstein, H. Frauenfelder, L. Reinisch, E. Shyamsunder, and C. Jung, J. Biol. Chem. 260, 8803–8809 (1985).

    Google Scholar 

  14. J. T. Bendler, J. Stat. Phys. 36, 625–637 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. W. Weber, Götting. Gel. Anz. p. 8 (1835), Annalen der Physik und Chemie (Poggendorf) 34, 247 (1835).

    Google Scholar 

  16. G. Williams and D. C. Watts, Trans. Farad. Soc. 66, 80 (1970).

    Article  Google Scholar 

  17. E. W. Montroll and J. T. Bendler, J. Stat. Phys. 34, 129–162 (1984).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. J. Klafter and M. E. Shlesinger, Proc. Natl. Acad. Sci. USA 83, 848–851 (1986).

    Article  ADS  Google Scholar 

  19. H. Frauenfelder, in Structure and Dynamics: Nucleic Acids and Proteins, Adenine Press, 369–376 (1983).

    Google Scholar 

  20. R. H. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, I. C. Gunsalus, and V. P. Marshall, Phys. Rev. Letters 32, 403–405 (1974).

    Article  ADS  Google Scholar 

  21. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, Phys. Rev. Letters 52, 1156–1159 (1984).

    Article  ADS  Google Scholar 

  22. L. Onsager, Phys. Rev. 37, 405–426 (1931).

    Article  ADS  MATH  Google Scholar 

  23. H. B. Callen and T. A. Welton, Phys. Rev. 83, 34–40 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. Kubo, Rep. Progr. Phys. 29, 255–284 (1966).

    Article  ADS  MATH  Google Scholar 

  25. P. Hänggi, Helv. Phys. Acta 51, 202–219 (1979).

    Google Scholar 

  26. R. G. Palmer, Adv. Phys. 31, 669–735 (1982).

    Article  ADS  Google Scholar 

  27. A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young, Proc. Natl. Acad. Sci. USA 82, 5000–5004 (1985)

    Article  ADS  Google Scholar 

  28. S. E. V. Phillips, J. Mol. Biol. 142, 531–554 (1980).

    Article  Google Scholar 

  29. V. I. Goldanskii, Yu. F. Krupyanskii, and V. N. Fleurov, Doklady Akad. Nauk SSSR 272, 978–981 (1983).

    Google Scholar 

  30. G. P. Singh, H. J. Schink, H. V. Lohneysen, F. Parak, and S. Hunklinger, Z. Phys. B55, 23–26 (1984).

    Article  ADS  Google Scholar 

  31. M. F. Shlesinger and E. W. Montroll, Proc. Natl. Acad. Sci. USA 81, 1280–1283 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958–961 (1984).

    Article  ADS  Google Scholar 

  33. B. Huberman and M. Kerszberg, J. Phys. A18, L331–336 (1985).

    ADS  MathSciNet  Google Scholar 

  34. R. Rammal, G. Toulouse, and M. A. Virasoro, Rev. Mod. Phys. 58, 765–788 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. T. Ogielsky and D. L. Stein, Phys. Rev. Letters 55, 1634–1637 (1985).

    Article  ADS  Google Scholar 

  36. A. Blumen, J. Klafter, and G. Zumofen, J. Phys. A19, L77–84 (1986).

    ADS  MathSciNet  Google Scholar 

  37. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).

    Google Scholar 

  38. B. Gavish and M. M. Werber, Biochemistry 18, 1269 (1979).

    Article  Google Scholar 

  39. D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, L. Reinisch, A. H. Reynolds, L. B. Sorensen, and K. T. Yue, Biochemistry 19, 5147–5157 (1980).

    Article  Google Scholar 

  40. H. A. Kramers, Physics 7, 284 (1940).

    MATH  MathSciNet  Google Scholar 

  41. H. Frauenfelder and P. G. Wolynes, Science 229, 337–345 (1985).

    Article  ADS  Google Scholar 

  42. P. Hänggi, J. Stat. Phys. 42, 105–148 (1986).

    Article  ADS  Google Scholar 

  43. G. R. Fleming, S. H. Courtney, and M. W. Balk, J. Stat. Phys. 42, 83–104 (1986).

    Article  ADS  Google Scholar 

  44. V. I. Goldanskii, Dokl. Akad. Nauk SSSR 124, 1261 (1959).

    Google Scholar 

  45. N. Alberding, R. H. Austin, K. W. Beeson, S. S. Chan, L. Eisenstein, H. Frauenfelder, and T. M. Nordlund, Science 192, 1002–1004 (1976).

    Article  ADS  Google Scholar 

  46. H. Frauenfelder, in Tunneling in Biological Systems, Academic Press, 627–649 (1979).

    Google Scholar 

  47. J. O. Alben, D. Beece, S. F. Bowne, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, P. P. Moh, L. Reinisch, A. H. Reynolds, and K. T. Yue, Phys. Rev. Letters 44, 1157–1160 (1980).

    Article  ADS  Google Scholar 

  48. N. Alberding, R. H. Austin, S. S. Chan, L. Eisenstein, H. Frauenfelder, D. Good, K. Kaufmann, M. Marden, T. M. Nordlund, L. Reinisch, A. H. Reynolds, L. B. Sorensen, G. C. Wagner, and K. T. Yue, Biophys. J. 24, 319–334 (1978).

    Article  Google Scholar 

  49. W. Doster, S. F. Bowne, H. Frauenfelder, L. Reinisch, and E. Shyamsunder, J. Mole. Biol. in press.

    Google Scholar 

  50. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys., January 1987.

    Google Scholar 

  51. L. Landau, Sov. Phys. 1, 89 (1932); Z. Phys. Sov. 2, 1932 (1932).

    Google Scholar 

  52. C. Zener, Proc. Roy. Soc. Ser. A137, 696 (1932).

    Article  ADS  Google Scholar 

  53. E. G. C. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dionys Baeriswyl Michel Droz Andreas Malaspinas Piero Martinoli

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Frauenfelder, H. (1987). The protein as a physics laboratory. In: Baeriswyl, D., Droz, M., Malaspinas, A., Martinoli, P. (eds) Physics in Living Matter. Lecture Notes in Physics, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009204

Download citation

  • DOI: https://doi.org/10.1007/BFb0009204

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18192-7

  • Online ISBN: 978-3-540-47803-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics