Skip to main content

Experimental techniques and comparison with theoretical results

  • Chapter
  • First Online:
Buckling and Post-Buckling

Part of the book series: Lecture Notes in Physics ((LNP,volume 288))

Abstract

The role of experiments in buckling and postbuckling studies of structures is examined. The essential elements of the experimental approach are discussed for a simple buckling test — a column under axial compression — and typical modern techniques are enumerated. The theory of modeling and its applications are summarized. The problems of buckling and postbuckling experiments for plates and shells are then discussed in detail, with emphasis on comparison with theoretical results and recent developments like initial imperfection measurements, definition of boundary condition and nondestructive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koiter, W.T., Current trends in the theory of buckling, in Buckling of Structures, Proceedings of IUTAM Symposium on Buckling of Structures, Harvard University, Cambridge, USA, June 17–21, 1974, (Ed. B. Budiansky), Springer-Verlag, Berlin, 1976, 1–16.

    Google Scholar 

  2. Chilver, A.H., Tne role of experimentation in the study of elastic stability of structures, in Stability, Solid Mecnanics Division, SM Study No. 6, University of Waterloo, Ontario, Canada, 1972, 63–84.

    Google Scholar 

  3. Arbocz, J., Past, present and future of shell stability analysis, Zeitscnrift fur Flugwissenschaften und Weltraumforschung, 5, 6, 1981, 335.

    Google Scholar 

  4. Tennyson, R.C., Interaction of cylindrical shell buckling experiments with tneory, in Theory of Snells, (Eds. W.T. Koiter and G.K. Mikhailov), North-Holland Publishing Co., 1980, 65–116.

    Google Scholar 

  5. Valsgard, S. and Toss, G., Buckling research in Det norske Veritas, in Buckling of Snells in Offshore Structures, (Eds. J.E. Harding, P.J. Dowling and N. Agelidis), Granada, London, 1982, 491–548.

    Google Scholar 

  6. Schulz, U., Der Stabilitatsnachweis bei Schalen, Berichte der Versucnsanstalt für Stan], Holz und Steine der Universität Fridericiana in Karlsruhe, 4. Folge, Heft 2, 1981.

    Google Scholar 

  7. Singer, J., The status of experimental buckling investigation of shells, in Buckling of Shells, (Ed. E. Ramm), Proceedings of a State-of-the-Art Colloquium, Stuttgart, Springer-Verlag, Berlin, Heidelberg, New York, 1982, 501–533.

    Google Scholar 

  8. Babcock, C.D., Shell stability, Journal of Applied Mechanics, 50, (1983), 935–940.

    Google Scholar 

  9. Esslinger, M. and Geier, B., Postbuckling behavior of structures, CSIM Courses and Lectures, No. 236, Springer-Verlag, Wien-New York, 1975.

    Google Scholar 

  10. Singer, J., Buckling experiments on shells — a review of recent developments, Solid Mechanics Archives, 7, 1982, 213–313.

    Google Scholar 

  11. Sechler, E.E., The role of experimentation in shell research, in Mechanics Today, 5, ( Ed. S. Nemat-Nasser), Pergamon Press, Oxford, 1980, 439–449.

    Google Scholar 

  12. Singer, J., Arbocz, J. and Babcock, C.D., Buckling of imperfect stiffened cylindrical shells under axial compression, AIAA Journal, 9, 1, 1971, 68–75.

    Google Scholar 

  13. Buchert, K.P., Practical application of shell research, in Buckling of Shells in Offshore Structures, (Eds. J.E. Harding, P.J. Dowling, and N. Agelidis), Granada, London, 1982, 257–283.

    Google Scholar 

  14. Hariri, R., Post buckling behavior of tee shaped aluminum columns, Doctoral Thesis, University of Michigan, 1967, University Microfilms International, Ann Arbor, Michigan.

    Google Scholar 

  15. Euler, L., De curvis elastics, 1744, Leonhard Euler's “Elastic Curves”, translated and annotated by Oldfather, W.A., Ellis, C.A. and Brown, D.M., repritned from Isis, 20, 59, 1933, The St. Catherine Press, Bruges, Belgium.

    Google Scholar 

  16. Von Kármán, Th., Untersuchungen uber Knickfestikeit, Mitteilungen uber Forschungsarbeiten auf dem Gebiet des Ingenieurwesens, Verein Deutscher Ingenieure, Heft 81, Berlin, 1910.

    Google Scholar 

  17. Prandtl, L., Kipperscheinungen, Dissertation, München, 1899.

    Google Scholar 

  18. Johnston, Bruce, A., Ed., Structural Stability Research Council, Guide to Stability Design Criteria for Metal Structures, (3rd edition), John Wiley and Sons, New York-London, 1976, 569–584.

    Google Scholar 

  19. Tall, L., Centrally compressed members, in Axially Compressed Structures, Stability and Strength, (Ed. R. Narayanan), Applied Science Publishers, London, 1982, 1–40.

    Google Scholar 

  20. European Convention for Constructional Steelwork, European Recommendations for Steel Constructions, Milan, ECCS, March, 1978.

    Google Scholar 

  21. Estuar, F.R. and Tall, L., Testing pinned-end steel columns, in Test Methods for Compression Members, ASTM STP 419, American Society for Testing Materials, 1967.

    Google Scholar 

  22. Huber, A.W., Fixtures for testing pin-ended columns, ASTM Bulletin, No. 234, December 1958.

    Google Scholar 

  23. Ari-Gur, J., Weller, T. and Singer, J., Experimental and theoretical studies of columns under axial impact, International Journal of Solids and Structures, 18, 1982, 619–639.

    Google Scholar 

  24. Ellinas, C.P. Supple, W.J. and Walker, A.C., Buckling of Offshore Structures, Granada, London, 1984.

    Google Scholar 

  25. Dym, C.L. and Ivey, E.S., Principles of Mathematical Modeling, Academic Press, New York, 1980.

    Google Scholar 

  26. Weller, T. and Singer, J., Experimental studies on the buckling under axial compression of integrally stringer-stiffened circular cylindrical shells, Journal of Applied Mechanics, 44, 4, 1977, 721–730.

    Google Scholar 

  27. Weller, L. and Singer, J., Experimental studies on buckling of ring-stiffened conical shell's under axial compression, Experimental Mechanics, 10, 11, 1970, 449–457.

    Google Scholar 

  28. Kodama, S., Otomo, K. and Yamaki, N., Postbuckling behavior of pressurized circular cylindrical shells under torsion — 1. Experiment, International Journal of Non-Linear Mechanics, 16, 3.4, 1981, 337–353.

    Google Scholar 

  29. Berke, L. and Carlson, R.L., Experimental studies of postbuckling behavior of complete spherical shells, Experimental Mechanics, 8, 12, 1968, 548–553.

    Google Scholar 

  30. Walker, A.C., A brief review of plate buckling research, Behaviour of Thin-Walled Structures, (Eds. J. Rhodes and J. Spence), Elsevier Applied Science Publishers, London, 1984, 375–398.

    Google Scholar 

  31. Rhodes, J. and Harvey, J.M., Examination of plate post-buckling behavior, Journal of the Engineering Mechanics Division, ASCE, 103, EM3, 1977, 461–477.

    Google Scholar 

  32. Schuman, L. and Back, G., Strength of rectangular plates under edge compression, NASA Technical Report, No. 356, 1930.

    Google Scholar 

  33. Sechler, E.E., The ultimate strength of thin flat sheet in compression, GALCIT Publication 27, Guggenheim Aeronautics Lab., California Institute of Technology, 1933.

    Google Scholar 

  34. von Karman, T., Sechler, E.E. and Donnell, L.H., The strength of thin plates in compression, ASME Transactions, 54, 1932, 53–57.

    Google Scholar 

  35. Hoff, N.J., Boley, B.A. and Coan, J.M., The development of a technique for testing stiff panels in edgewise compression, Proceedings of the Society for Experimental Stress Analysis, 5, 1948, 14–24.

    Google Scholar 

  36. Southwell, R.U., On the analysis of experimental observations in problems of elastic stability, Proc. Royal Society London, Ser. A, 135, 1932, 601–616.

    Google Scholar 

  37. Simitses, G.J., An Introduction to the Elastic Stability of Structures, Prentice-Hall, Englewood Cliffs, N.J., 1976, 68.

    Google Scholar 

  38. Spencer, H.H. and Walker, A.C., Critique of Southwell plots with proposals for alternative methods, Experimental Mechanics, 15, 8, 1975, 303–310.

    Google Scholar 

  39. Horton, W.H., Cundari, F.L. and Johnson, R.W., The analysis of experimental data obtained from stability studies on elastic column and plate structures, Israel Journal of Technology, 5, 1/2, 1967, 104–113.

    Google Scholar 

  40. Schlack, A.L., Experimental critical loads for perforated square plates, Proceedings of the Society for Experimental Stress Analysis, 25, 1968, 69–74.

    Google Scholar 

  41. Timoshenko, S.P. and Gere, J.M., Theory of Elastic Stability, McGraw-Hill, New York, 1961, 424.

    Google Scholar 

  42. Walker, A.C., Flat rectangular plates subjected to a linearly-varying edge compressive loading, Thin-Walled Structures, (Ed. A.H. Chilver), Chatto and Windus, London, 1967, 208–247.

    Google Scholar 

  43. Bradfield, C.D., Tests of plates loaded in in-plane compression, Journal of Constructional Steel Research, 1, 1, 1980, 27

    Google Scholar 

  44. Mofflin, D.S. and Dwight, J.B, Buckling of aluminium plates in compression, Behaviour of Thin-Walled Structures, (Eds. J. Rhodes and J. Spence), Elsevier Applied Science Publishers, London, 1984, 399–427.

    Google Scholar 

  45. Stein, M., Loads and deformations of buckled rectangular plates, NASA Technical Report, TR R-40, 1959.

    Google Scholar 

  46. Babcock, C.D., Experiments in shell buckling, Thin-Shell Structures, Theory, Experiments and Design, (Eds. Y.C. Fung and E.E. Sechler), Prentice-Hall, Englewood Cliffs, N.J. 1974, 345–369.

    Google Scholar 

  47. Hoff, N.J., The perplexing behavior of thin circular cylindrical shells in axial compression, Israel Journal of Technology, 4, 1, 1966, 1–28.

    Google Scholar 

  48. Babcock, C.D. and Sechler, E.E., The effect of initial imperfections on the buckling stress of cylindrical shells, NASA Technical Note, TN D-2005, 1963.

    Google Scholar 

  49. Arbocz, J. and Babcock, C.D., Experimental investigation on the effect of general imperfection on the buckling of cylindrical shells, NASA Current Report, CR-1163, 1968.

    Google Scholar 

  50. Singer, J. and Bendavid, D., Buckling of electroformed conical shells under hydrostatic pressure, AIAA Journal, 6, 12, 1968, 2332–2337.

    Google Scholar 

  51. Ishay, O., Weller, T. and Singer, J., Anisotropy of Mylar A sheets, ASTM Journal of Materials, 3, 2, 1968, 337–351.

    Google Scholar 

  52. Yamaki, N. and Otomo, K., Experiments on the postbuckling behavior of circular cylindrical shells under hydrostatic pressure, Experimental Mechanics, 13, 9, 1973, 299–304.

    Google Scholar 

  53. Yamaki, N., Otomo, K. and Matsuda, K., Experiments on the postbuckling behavior of circular cylindrical shells under compression, Experimental Mechanics, 15, 1, 1975, 23–28.

    Google Scholar 

  54. Yamaki, N., Experiments on the postbuckling behavior of circular cylindrical shells under torsion, Buckling of Structures, Proc. IUTAM Symp. Harvard Univ., Cambridge, Mass., U.S.A., June 17–21, 1974, (Ed. B. Budiansky), Springer-Verlag, Berlin, 1976, 312–330.

    Google Scholar 

  55. Esslinger, M. and Geier, B., Calculated postbuckling loads as lower limits for the buckling loads of thin walled circular cylinders, Buckling of Structures, Proc. IUTAM Symp. Harvard Univ., Cambridge, Mass. U.S.A., June 17–21, 1974, (Ed. B. Budiansky), Springer-Verlag, Berlin, 1976, 274–290.

    Google Scholar 

  56. Geier, B. and Heidemann, U., Experimental investigations on the buckling of thin walled isotropic cylinders subjected to external hydrostatic pressure, DFVLR, DLR-FB, 77–46, 1977.

    Google Scholar 

  57. Foster, C.G., Interaction of buckling modes in thin-walled cylinders, Experimental Mechanics, 21, 3, 1981, 124–128.

    Google Scholar 

  58. Yamaki, N. and Kodama, S., Postbuckling behavior of circular cylindrical shells under compression, International Journal of Non-Linear Mechanics, 11, 1976, 99–111.

    Google Scholar 

  59. Kodama, S. and Yamaki, N., Postbuckling behavior of pressurised circular cylindrical shells under torsion — II. theory, International Journal of Non-Linear Mechanics, 16, 3/4, 1981, 355–370.

    Google Scholar 

  60. Kaplan, A., Buckling of spherical shells, Thin-Shell Structures, Theory, Experiments and Design, (Eds. Y.C. Fung and E.E. Sechler), Prentice-Hall, Englewood Cliffs, N.JU., 1974, 247–288.

    Google Scholar 

  61. Thomson, J.M.T., Making of metal shells for model stress analysis, Journal of Mechanical Engineering Science, 2, 1960, 105–108.

    Google Scholar 

  62. Carlson, R.L., Sendelbeck, R.L. and Hoff, N.J., Experimental studies of the buckling of complete spherical shells, Experimental Mechanics, 7, 7, 1967, 281–288.

    Google Scholar 

  63. Yamada, M. and Yamada, S., Agreement between theory and experiment on large-aeflection behavior of clamped shallow spherical shells under external pressure, Collapse, the Buckling of Structures in Theory and Practice, (Eds. J.M.T. Thompson and G.W. Hunt), Cambridge University Press, Cambridge, 1983, 431–441.

    Google Scholar 

  64. Singer, J., Abramovich, H. and Yaffe, R., Initial imperfection measurements of stiffened shells and buckling predictions, Israel Journal of Technology, 17, 1979, 324–338.

    Google Scholar 

  65. Grove, T., and Didriksen, T., Buckling experiments on 4 large ring-stiffened cylindrical shells subjected to axial compression and lateral pressure, bet norske Veritas, Report No. 77-431, 1977.

    Google Scholar 

  66. Arbocz, J. and Babcock, C.D., Prediction of buckling loads based on experimentally measured initial imperfections, Buckling of Structures, Proc. of IUTAM Symp. Harvard University, Cambridge, Mass., U.S.A., June 17–21, 1974, (Ed. B. Budiansky), Springer-Verlag, Berlin, 1976, 291–311.

    Google Scholar 

  67. Walker, A.C., Andronicou, A. and Shridharan, S., Experimental investigations of the buckling of stiffened shells using small scale models, buckling of Shells in Offshore Structures, (Eds. J.E. Harding, P.J. Dowling and N. Agelidis), Granada, London, 1982, 45–72.

    Google Scholar 

  68. Arbocz, J. and Williams, J.G., Imperfection surveys on a 10-ft. diameter shell structure, AIAA Journal, 15, 7, 1977, 949–956.

    Google Scholar 

  69. Dowling, P.J. and Harding, J.E., Experimental behaviour of ring and stringer stiffened shells, Buckling of Shells in Offshore Structures, (Eds. J.E. Harding, P.J. Dowling and N. Agelidis), Granada, London, 1982, 73–108.

    Google Scholar 

  70. Oldland, J., An experimental investigation of the buckling strength of ring-stiffened cylindrical shells under axial compression, Norwegian Maritime Research, 9, 1981, 22–39.

    Google Scholar 

  71. Rosen, A., Singer, J., Grunwald, A., Nachmani, S. and Singer, F., Unified noncontact measurement of vibrations and imperfections of cylindrical shells, Proceedings of the 7th International Conference on Experimental Stress Analysis, Haifa, Israel, August 23–27, 1982, Technion — Israel Institute of Technology, 1982, 524–538.

    Google Scholar 

  72. Singer, J., Recent studies on the correlation between vibration and buckling of stiffened cylindrical shells, Zeitschrift fur Flugwissenschaften und Weltraumforschung, 3, 6, 1979, 333–343.

    Google Scholar 

  73. Singer, J., Vibrations and buckling of imperfect stiffened shells — recent developments, Collapse, the Buckling of Structures in Theory and Practice, (Eds. J.M.T. Thompson and G.W. Hunt), Cambridge University Press, Cambridge, 1983, 443–481.

    Google Scholar 

  74. Singer, J. and Rosen, A., Influence of boundary conditions on the buckling of stiffened cylindrical shells, Buckling of Structures, Proc. of IUTAM Symp. Harvard Univ., Cambridge, U.S.A., June 17–21, 1974, (Ed. B. Budiansky), Springer-Verlag, Berlin, 1976, 227–250.

    Google Scholar 

  75. Abramovich, H., Singer, J. and Grunwald, A., Nondestructive determination of interaction curves for buckling of stiffened shells, TAE Report 341, Technion — Israel Inst. of Technology, Dept. of Aeronautical Eng., Haifa, Israel, Dec. 1981.

    Google Scholar 

  76. Weller, T., Singer, J. and Batterman, S.C., Influence of eccentricity of loading on buckling of stringer-stiffened cylindrical shells, Thin-Shells Structure, Theory, Experiment and Design, (Eds. Y.C. Fung, and E.E. Sechler), Prentice-Hall, Englewood-Cliffs, N.J., 1974, 305–324.

    Google Scholar 

  77. Singer, J. and Abramovich, H., Vibration techniques for definition of practical boundary conditions in stiffened shells, AIAA Journal, 17, 7, 1979, 762–769.

    Google Scholar 

  78. Singer, J. and Prucz, J., Influence of imperfections on the vibrations of stiffened cylindrical shells, Journal of Sound and Vibration, 80, 1, 1982, 117–143.

    Google Scholar 

  79. Rosen, A. and Singer, J., Vibrations and buckling of eccentrically stiffened shells, Experimental Mechanics, 16, 3, 1976, 88–94.

    Google Scholar 

  80. Horton, W.H. Nassar, E.M. and Singhal, M.K., Determination of critical load of shells by nondestructive methods, Experimental Mechanics, 17, 1977, 154–160.

    Google Scholar 

  81. Singer, J., Vibration correlation techniques for improved buckling predictions of imperfect stiffened shells, Buckling of Shells in Offshore Structures, (Eds. J.E. Harding, P.J. Dowling and N. Agelidis), Granada, London, 1982, 285–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Singer, J. (1987). Experimental techniques and comparison with theoretical results. In: Buckling and Post-Buckling. Lecture Notes in Physics, vol 288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009200

Download citation

  • DOI: https://doi.org/10.1007/BFb0009200

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18312-9

  • Online ISBN: 978-3-540-47875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics