Skip to main content

Post-buckling behaviour of structures numerical techniques for more complicated structures

  • Chapter
  • First Online:
Buckling and Post-Buckling

Part of the book series: Lecture Notes in Physics ((LNP,volume 288))

Abstract

This paper deals with the stability problem of axially compressed imperfect orthotropic cylindrical shells. The initial imperfections are represented by a double Fourier series. Approximate solutions are derived for a single axisymmetric, a single asymmetric, a 2-modes and a multimode imperfection model. The effect of boundary conditions is studied by reducing the stability problem to the solution of a 2-point nonlinear boundary value problem. A reliability based stochastic stability approach is described, which makes it possible to include the results of the Imperfection Sensitivity Theory directly into an Improved Shell Design Procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hutchinson, J.W. and W.T. Koiter: Postbuckling theory. Appl. Mech. Rev. 23 (1970), 1353–1366.

    Google Scholar 

  2. Fung, Y.C. and E.E. Sechler (Editors): Thin-Shell Structures, Theory, Experiment and Design. Prentice Hall, Englewood Cliffs, N.J. 1974.

    Google Scholar 

  3. Singer, J.: The status of experimental buckling investigations, in: Buckling of Shells — A State-of-the-Art Colloquium (Ed. E. Ramm), Springer Verlag, Berlin 1982, 501–514.

    Google Scholar 

  4. Geier, B.: Das Beulverhalten Versteifter-Zylinderschalen. Teil 1, Differential-Gleichungen. Z. Flugwiss. 14 (1966), 306–323.

    Google Scholar 

  5. Koiter, W.T.: On the stability of elastic equilibrium. Ph. D. Thesis, in Dutch, TH Delft, Netherlands, H.T. Paris, Amsterdam 1945. English translation issued as NASA TT F-10 (1967), 833 p.

    Google Scholar 

  6. Arbocz, J.: The effect of initial imperfections on shell stability, in: Thin Shell Structures, Theory, Experiment and Design (Eds. Y.C. Fung and E.E. Sechler), Prentice Hall, Englewood Cliffs, N.J. (1974), 205–245.

    Google Scholar 

  7. Koiter, W.T.: The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression. Koninkl. Ned. Akad. Wetenschap. Proc. B66 (1963), 265–279.

    Google Scholar 

  8. Hutchinson, J.W. and J.C. Amazigo: Imperfection sensitivity of eccentrically stiffened cylindrical shells. AIAA J. (1967), 392–401.

    Google Scholar 

  9. Budiansky, B. and J.W. Hutchinson: Dynamic buckling of imperfection-sensitive structures, in: Proc. XI Intern. Congr. Appl. Mech. (ed. H. Görtler), Springer Verlag, Berlin (1964), 636–651.

    Google Scholar 

  10. Cohen, G.A.: User document for computer programs for ring-stiffened shells of revolution. NASA CR-2086 (1973).

    Google Scholar 

  11. Hutchinson, J.W. and J.C. Frauenthal: Elastic postbuckling behaviour of stiffened and barreled cylindrical shells. J. Appl. Mech. 36 (1969), 784–790.

    Google Scholar 

  12. Arbocz, J. and E.E. Sechler: On the buckling of axially compressed ring and stringer stiffened imperfect cylindrical shells, GALCIT Report SM 73-10, California Institute of Technology, Pasadena (1973).

    Google Scholar 

  13. Arbocz, J. and E.E. Sechler: On the buckling of axially compressed imperfect cylindrical shells, J. Appl. Mech. 41 (1974), 737–743.

    Google Scholar 

  14. Hutchinson, J.W.: Axial buckling of pressurized imperfect cylindrical shells. AIAA J. 3 (1965), 1461–1466.

    Google Scholar 

  15. Thurston, G.A. and M.A. Freeland: Buckling of imperfect cylinders under axial compression. NASA CR-541 (1966).

    Google Scholar 

  16. Arbocz, J. and C.D. Babcock: A multimode analysis for calculating buckling loads of imperfect cylindrical shells. GALCIT Report SM 74-4, California Institute of Technology, Pasadena (1974).

    Google Scholar 

  17. Kempner, J.: Postbuckling behaviour of axially comppressed cylindrical shells. J. Aeron. Scien. 21 (1954), 329–335.

    Google Scholar 

  18. Arbocz, J. and C.D. Babcock: Prediction of buckling loads based on experimentally measured initial imperfections. in: Proc. IUTAM Symp. Buckling of Structures, Harvard University, Cambridge, Ma. 1974 (Ed. B. Budiansky), Springer Verlag, Berlin 1976, 291–311.

    Google Scholar 

  19. Arbocz, J. and C.D. Babcock: The effect of general imperfections on the buckling of cylindrical shells. J. Appl. Mech. 36 (1969), 28–38.

    Google Scholar 

  20. Imbert, J.: The effect of imperfections on the buckling of cylindrical shells, Aeronautical Engineer Thesis, California Institute of Technology, Pasadena (1971).

    Google Scholar 

  21. Singer, J. Abramovich, H. and R. Yaffe: Initial imperfection measurements of stiffened shells and buckling predictions. In: Proc. 21st Israel Conference on Aviation and Astronautics, Israel J. of Techn. 17 (1979), 324-338.

    Google Scholar 

  22. Singer, J.: Vibrations and buckling of imperfect stiffened shells-recent developments. In: Proc. IUTAM Symp. Collapse: the buckling of structures in theory and practice, University College, London 1982 (Eds. J.M.T. Thompson and G.W. Hunt), Cambridge University Press, Cambridge 1983, 443–479.

    Google Scholar 

  23. Arbocz, J. and H. Abramovich: The initial imperfection data bank at the Delft University of Technology — Part I, Report LR-290, Delft University of Technology, 1979.

    Google Scholar 

  24. Singer, J. and A. Rosen: The influence of boundary conditions on the buckling of stiffened cylindrical shells. In: Proc. IUTAM Symp. Buckling of Structures, Harvard University, Cambridge, Ma., 1974 (Ed. B. Budiansky), Springer-Verlag, Berlin 1976, 227–250.

    Google Scholar 

  25. Singer, J. and H. Abramovich: Vibration techniques for definition of practical boundary conditions in stiffened shells. AIAA J. 17 (1979), 762–769.

    Google Scholar 

  26. Singer, J. and J. Prucz: Influence of imperfections on the vibrations of stiffened cylindrical shells. J. Sound and Vibration 80 (1982), 117–143.

    Google Scholar 

  27. Stein, M.: Some recent advances in the investigation of shell buckling. AIAA J. 6 (1968), 2339–2345.

    Google Scholar 

  28. Weller, T. Singer, J. and S.C. Batterman: Influence of eccentricity of loading on buckling of stringer-stiffened cylindrical shells. In: Thin Shell Structures, Theory, Experiment and Design (Eds. Y. C. Fung and E.E. Sechler), Prentice Hall, Englewood CIiffs, NJ. 1974, 305–324.

    Google Scholar 

  29. Block, D.L.: Influence of prebuckling deformations, ring stiffeners and load eccentricity on the buckling of stiffened cylinders. In: Proc. AIAA/ASME 8th Structures, Structural Dynamics and Materials Conference, 1967, 597–607.

    Google Scholar 

  30. Keller, H.: Numerical Methods for Two-Point Boundary Value Problems, Blaisdell Publishing Co., Waltham, Ma. 1968.

    Google Scholar 

  31. Arbocz, J. and E.E. Sechler: On the buckling of stiffened imperfect shells. AIAA J. 14 (1976), 1611–1617.

    Google Scholar 

  32. Babcock, C.D. and E.E. Sechler: The effect of initial imperfections on the buckling stress of cylindrical shells, NASA TN D-1510 (1962), 135–142.

    Google Scholar 

  33. Bushnell, D.: Stress, stability and vibration of complex branched shells of revolution: Analysis and user's manual for BOSOR-4. NASA CR-2116 (1972).

    Google Scholar 

  34. Arbocz, J. and C.D. Babcock: Utilization of STAGS to determine knockdown factors from measured initial imperfections, Report LR-275, Delft University of Technology, 1978.

    Google Scholar 

  35. Almroth, B.O., Brogan, F.A., Miller, E., Zele, F. and H.T. Peterson: Collapse analysis for shells of general shape, User's Manual for the STAGS-A computer code, Air Force Flight Dynamics Lab., Wright Patterson AFB, AFFDL-TR-71-8, 1973.

    Google Scholar 

  36. Anonymous: Buckling of Thin-Walled Cylinders. NASA Space Vehicle Design Criteria (Structures), NASA SP-8007, revised, 1968.

    Google Scholar 

  37. Anonymous: Rules for the Design, Construction and Inspection of Offshore Structures. Det Norkse Veritas, Oslo 1977.

    Google Scholar 

  38. Anonymous: Beulsicherheitsnachweise für Schalen. DASt Richtlinie 013, Deutscher Ausschuss für Stahlbau, 1980.

    Google Scholar 

  39. Bolotin, V.V.: Statistical Methods in the Nonlinear Theory of Elastic Shells. NASA TT F-85 (1962) Translation of a paper presented at a seminar in the Inst. of Mech. of the Acad. of Sciences USSR, 1957.

    Google Scholar 

  40. Makaroff, B.P.: Statistical analysis of the stability of imperfect cylindrical shells. In: Proc. 7th All-Union Conf. on the theory of Plates and Shells, Dnepropetrovsk 1969, 387–391 (in Russian).

    Google Scholar 

  41. Amazigo, J.C.: Buckling under axial compression of long cylindrical shells with random axisymmetric imperfections. Quart. Appl. Math. 26 (1969), 537–566.

    Google Scholar 

  42. Roorda, J. and J.S. Hansen: Random buckling behaviour in axially loaded cylindrical shells with axisymmetric imperfections. J. Spacecraft 9 (1972), 88–91.

    Google Scholar 

  43. Elishakoff, I.: Buckling of a stochastically imperfect finite column on a nonlinear elastic foundation — A reliability study. J. Appl. Mech. 46 (1979), 411–416.

    Google Scholar 

  44. Elishakoff, I.: Simulation of space-random fields for solution of stochastic boundary-value problems. J. Acoust. Soc. Amer. 65 (1979), 399–403.

    Google Scholar 

  45. Elishakoff, I. and J. Arbocz: Reliability of axially compressed cylindrical shells with random axisymmetric imperfections. Int. J. Solids and Structures, 18 (1982), 563–585.

    Google Scholar 

  46. Elishakoff, I. and J. Arbocz: Reliability of axially compressed cylindrical shells with general nonsymmetric imperfections. J. Appl. Mech. 52 (1985), 122–128.

    Google Scholar 

  47. Arbocz, J. and C.D. Babcock: The Buckling Analysis of Imperfection Sensitive Shell Structures. NASA CR-3310 (1980).

    Google Scholar 

  48. Bushnell, D.: Computerized Buckling Analysis of Shells. Kluwer Academic Publishers, Hingham, Ma. 1985.

    Google Scholar 

  49. Arbocz, J.: About the development of interactive shell design codes. In: Proc. Int. Conf. Spacecraft Structures, Toulouse, 1985 (In press).

    Google Scholar 

  50. Arbocz, J.: Shell stability analysis: theory and practice. In: proc. IUTAM Symp. Collapse: The buckling of structures in theory and practice, University College, London, 1982 (Eds. J.M.T. Thompson and G.W. Hunt), Cambridge University Press, Cambridge 1983, 43–74. *** DIRECT SUPPORT *** A3418220 00003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Arbocz, J. (1987). Post-buckling behaviour of structures numerical techniques for more complicated structures. In: Buckling and Post-Buckling. Lecture Notes in Physics, vol 288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009198

Download citation

  • DOI: https://doi.org/10.1007/BFb0009198

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18312-9

  • Online ISBN: 978-3-540-47875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics