Advertisement

Biological nitrogen removal from wastewater

  • U. Wiesmann
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 51)

Abstract

A review of the research on the kinetics of nitrification and denitrification is presented including an explanation of reaction engineering models. The results of laboratory scale experiments with high rate nitrification processes are discussed using kinetic results for oxygen limitation as well as for substrate limitation and inhibition. It can be demonstrated that reaction engineering models are helpful for a better understanding of the processes and for the design of reactors. Pilot scale investigations from the last 15 years show remarkable advances in the increase in nitrification efficiency and in the stabilization of the process. The time is ripe for nitrogen removal from industrial effluents in full scale processes!

Keywords

Nitrogen Removal Stir Tank Reactor Oxygen Limitation Activate Sludge System Hydraulic Residence Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

c

concentration

cB

bacteria concentration as odm (organic dry matter) M/L3

c′

concentration of dissolved oxygen M/L3

kD

decay coefficient 1/T

ke

endogenous respiration coefficient 1/T

K′

oxygen saturation coefficient M/L3

KSH

saturation coefficient for the unionized substrate M/L3

KiH

inhibition coefficient for the unionized substrate M/L3

Ks

saturation coefficient for the ionized substrate M/L3

Ki

inhibition coefficient for the ionized substrate M/L3

Ka, Kb

equilibrium constants for dissociation of the substrate M/L3

nR

recycle ratio

nE

thickening ratio

r

reaction rate M/L3T

r′

oxygen utilization rate M/L3T

r′*

real maximal oxygen utilization rate M/L3T

rBW

growth rate M/L3T

rBd

decay rate M/L3T

\(r_{o_2 s}\)

oxygen utilization rate for substrate removal (e.g. ammonia) M/L3T

\(r_{o_2 e}\)

oxygen utilization rate for endogenous respiration M/L3T

S

Monod or Haldane term (Eq. 42)

T

temperature ‡C

t

time T

tv

(hydraulic) mean residence time T

tvB

sludge age (mean residence time of bacteria) T

Μ

specific growth rate 1/T

Μmax

maximal specific growth rate 1/T

Μmax*

real maximal specific growth rate 1/T

o

influent

a

effluent, reactor

M

mixing point

R

recycle flow

ü

surplus sludge

k

critical

max

maximal

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cousins WG, Mindler AB (1972) J WPCF 44: 607Google Scholar
  2. 2.
    Koziorowski B, Kucharski J (1972) Industrial waste disposal. Pergamon, OxfordGoogle Scholar
  3. 3.
    Adams CE, Eckenfelder WW (1977) J WPCF 49: 413Google Scholar
  4. 4.
    Garrison WE, Kremer JG, Murk J (1973) Proc 28th Ann Purdue Ind Waste Conf 309–322Google Scholar
  5. 5.
    Pascik I, Mann T (1984) Water Sci Tech Vol 16, Vienna, 215–223Google Scholar
  6. 6.
    Hutton WC, La Rocca Sa (1975) J WPCF 47, 989–997Google Scholar
  7. 7.
    Arnold DW, Wolfram WE (1975) Proc 30th Ann Purdue Ind Waste Conf 760-767Google Scholar
  8. 8.
    Meinck F, Stoof H, Kohlschütter H (1968) IndustrieabwÄsser; Fischer, StuttgartGoogle Scholar
  9. 9.
    ATV (eds) (1985) Lehr-und Handbuch der Abwassertechnik, 3 Aufl, Bd V: Organisch verschmutzte AbwÄsser der Lebensmittelindustrie. Ernst, BerlinGoogle Scholar
  10. 10.
    Braun R (1982) Biogas-MethangÄrung organischer Abfallstoffe — Grundlagen und Anwendungsbeispiele. Springer, WienGoogle Scholar
  11. 11.
    Neumann H, Viehl K (1966) Gwf wasser/abwasser 107, 1151–1154Google Scholar
  12. 12.
    Zall RR (1972) J Milk Food Technol 35, 53–55Google Scholar
  13. 13.
    Basu AK (1975) J WPCF 2184–2190Google Scholar
  14. 14.
    Patterson JW, Minear Ra (1975) State-of-the-Art for Inorganic Chemicals Industry: Commerical Explosives; US EPA 6002-74-009-bGoogle Scholar
  15. 15.
    US EPA (Hrsg. 1975) Development Document for Effluent Limitation Guidelines and New Source Performance Standards for the Pressed and Blown Glass Segment of the Glass Manufacturing Point Source Category; US EPA 440/1-75/034-aGoogle Scholar
  16. 16.
    Brown GE (1975) Land Application of High Nitrogenous Industrial Wastewater; Proc of the National Conf on Management and Disposal of Residues from the Treatment of Ind Wastewaters, Washington DCGoogle Scholar
  17. 17.
    Dombrowski T (1991) Kinetik der Nitrifikation und Reaktionstechnik der Stickstoffeliminierung aus hochbelasteten AbwÄssern; VDI-Fortschrittsberichte, Reihe 15: Umwelttechnik Nr 87Google Scholar
  18. 18.
    Patterson JW (ed) (1985) Nitrite and Nitrate Nitrogen, in Industrial Wastewater Treatment Technology. Butterworth, BostonGoogle Scholar
  19. 19.
    Francis CW, Mankin JB (1977) Water Research 11: 289Google Scholar
  20. 20.
    Jewell WJ, Cummings RJ (1975) J of WPCF 47: 2281Google Scholar
  21. 21.
    Bode H (1985) Beitrag zur Anaerob-aerob-Behandlung von IndustrieabwÄssern; Veröff des Inst f Siedlungswasser-wirtschaft der UniversitÄt Hannover, Heft 64Google Scholar
  22. 22.
    Lompe D (1992) Kinetik und Reaktionstechnik der biologischen Denitrifikation; Dissertation, TU BerlinGoogle Scholar
  23. 23.
    Frame Wastewater Regulation, Allgemeine Rahmen-Verwaltungs-vorschrift über Mindestanforderungen an das Einleiten von Abwasser in GewÄsser (Rahmen-Abwasser VwV), Anhang 1 “Gemeinden”, vom 8. Sept 1989Google Scholar
  24. 24.
    Lohaus J (1990) Korrespondenz Abwasser 37, 660–667Google Scholar
  25. 25.
    Loveless Je, Painter Ha (1968) J gen Microbiol 52, 1–14Google Scholar
  26. 26.
    Haug RT, McCyrty PL (1972) J WPCF 44, 2086–2102Google Scholar
  27. 27.
    Sharma B, Ahlert RC (1977) Water Research 11, 897–925Google Scholar
  28. 28.
    Haldane JBS (1965) Enzymes; Longmans Green London (1930) and MIT Press Cambridge, MassGoogle Scholar
  29. 29.
    Knowles G, Downing AL, Barret MJ (1965) J gen Microbiol 38, 263–278Google Scholar
  30. 30.
    Jenkins SH (1969) Nitrification, Water Poll Control, 610–618Google Scholar
  31. 31.
    Gray NF (1989) Biology of Wastewater Treatment; Oxford Science Publishers, OxfordGoogle Scholar
  32. 32.
    Stankewich MJ jr (1972) Proc 27th Ann Purdue Ind Waste Conf 1–23Google Scholar
  33. 33.
    Wiesmann U (1966) Chem-Ing-tech 58, 464–474Google Scholar
  34. 34.
    Wiesmann U (1989) Wasserkalender, Erich-Schmidt, Berlin, p 117Google Scholar
  35. 35.
    Lompe D, Wiesmann U (1991) Chem-Ing-Tech 63, 692–699Google Scholar
  36. 36.
    Anthonisen AC, Loehr RC (1976) J WPCF, 835–852Google Scholar
  37. 37.
    Bergeron P (1978) Karlsruher Berichte zur Ingenieurbiologie, H 12Google Scholar
  38. 38.
    Nyhuis G (1985) Veröffentlichungen des Instituts für Siedlungswasserwirtschaft und Abfalltechnik der TU Hannover, Heft 61Google Scholar
  39. 39.
    Richardson M (1985) Royal Society of Chemistry, LondonGoogle Scholar
  40. 40.
    Bédard C, Knowles R (1989) Microbiol Rev 53, 68–84Google Scholar
  41. 41.
    La Motta E (1979) J Env Eng div, 655–673Google Scholar
  42. 42.
    Tanaka H, Dunn IJ (1982) Biotech and Bioeng 24, 669–689Google Scholar
  43. 43.
    Strand SE, McDonell AJ (1985) Water Research 19, 345–352Google Scholar
  44. 44.
    Larsen-Vefring W (1992) Simulation der Nitrifikation und anderer bakterieller Stoffwandlungen im Biofilm; Dissertation, TU BerlinGoogle Scholar
  45. 45.
    ATV-Regelwerk, Arbeitsblatt A 131, Feb 91: Bemessung von einstufigen Belebungsanlagen ab 5000 EinwohnerwertenGoogle Scholar
  46. 46.
    Williams SC, Harrington DW, Cooper PF (1986) Wat Pol Control 85, 81–89Google Scholar
  47. 47.
    Dalentoft E: Biological Treatment of a high strength nitrogen wastewater, Environ Biotechnology, Int Symp 22/25.04.1991, OstendeGoogle Scholar
  48. 48.
    Shade HJ (1977) Chem Eng Progr 73, 45–50Google Scholar
  49. 49.
    Ganczarczyk JJ (1979) Water Research 13, 337–342Google Scholar
  50. 50.
    Heijnen JJ (1989) Large Scale Anaerobic-aerobic Treatment of Complex Industrial Waste Water Using Immobilized Biomass in Fluidized Bed and Air-Lift Suspensions Reactors: GVC reprints Verfahrenstechnik der mechanischen, thermischen und biologischen Abwasserreinigung, Bd 2Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • U. Wiesmann
    • 1
  1. 1.Institut für VerfahrenstechnikTechnische UniversitÄt BerlinBerlinFRG

Personalised recommendations