Advertisement

Noninferior periodic operation of bioreactor systems

  • S. Hasegawa
  • K. Shimizu
Chapter
  • 85 Downloads
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 51)

Abstract

In the optimal design and operation of bioreactor systems, a single objective function has been extensively employed in the past.

Here, we formulate the optimization problem as a multi-objective programming problem which determines the noninferior solutions with respect to performance indexes. This approach has proved itself to be quite useful in getting insight into the well-balanced performance evaluation for a variety of bioreactor systems. Furthermore, we consider the optimization problem in the framework of generalized periodic operation since it contains various operations as its special cases.

Keywords

Bioreactor System Periodic Operation Batch Operation Oleyl Alcohol Repeated Batch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations and Symbols

bi (i=1∼4)

temperature dependent parameters

EJi

Ji-extreme point

Ji

components of an objective function

Ki

inhibition constant [kg m−3]

Ks

saturation constant [kg m−3]

m

maintenance coefficient

p(pm)

(maximum) concentration of the metabolite [kg m−3]

q(qF)

(feed) flow rate [m−3 h−1]

RB

repeated batch operation

RFB

repeated fed-batch operation

s(sF)

(feed) substrate concentration [kg m−3]

SS

steady-state operation or continuous operation

t

time [h]

TL

cultivation period counted after cell concentration reached 95% of maximum cell concentration

v(vm)

(maximum) working volume [m3]

x

cell concentration [kg m−3]

X

≡ vx

Y, Y*

yield coefficients

z

≡ p/(sF−s)

α

constant in Eq. (11)

Β

constant in Eq. (11)

δ

Dirac's delta function

ε

≡ V*/V

η

volume fraction of product draw-off

λ

constant for the evaluation of growth-lag period

θ

cultivation temperature [‡C]

Μ (Μm)

(maximum) specific growth rate [h−1]

ξ

volume fraction of the initial feed of substrate

π

specific production rate of metabolite [h−1]

Φ

distribution (partition) coefficient

Τ

period [h]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shamel RE, Chow JJ (1987) Chem Eng Prog 10: 41Google Scholar
  2. 2.
    Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering, 2nd edn. Academic, New YorkGoogle Scholar
  3. 3.
    Atkinson B (1974) Biochemical reactors. Piton, LondonGoogle Scholar
  4. 4.
    Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, OxfordGoogle Scholar
  5. 5.
    Bailey JE, Ollis DF (1977) Biochemical engineering fundamentals. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Wang DIC, Cooney CL, Demain AL, Dunhill P, Humphrey AE, Lilly MD (1979) Fermentation and enzyme technology. Wiley, New YorkGoogle Scholar
  7. 7.
    Benefield LB, Randall CW (1980) Biological process design for wastewater treatment. Prentice-Hall, Englewood CliffsGoogle Scholar
  8. 8.
    Schügerl K (1987) Bioreaction engineering, vol 1. Wiley, New YorkGoogle Scholar
  9. 9.
    Moser A (1988) Bioprocess technology: Kinetics and reactors. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. 10.
    Cohon JL (1978) Multiobjective programming and planning, Academic, New YorkGoogle Scholar
  11. 11.
    Weigand WA (1981) Biotechnol Bioeng 23: 249Google Scholar
  12. 12.
    Miele A (1962) In: Leitman G (ed) Optimization techniques, Academic, New YorkGoogle Scholar
  13. 13.
    Yamane T, Sada E, Takamatsu T (1979) Biotechnol Bioeng 21: 111Google Scholar
  14. 14.
    Matsubara M, Hasegawa S, Shimizu K (1985) Biotechnol Bioeng 27: 1214Google Scholar
  15. 15.
    Gaden Jr EL (1959) J Biochem Microbiol Technol Eng 1: 413Google Scholar
  16. 16.
    Luedeking R, Piret EL (1959) J Biochem Microbiol Technol Eng 1: 393Google Scholar
  17. 17.
    Shingu H, Terui G (1971) J Ferment Technol 49: 400Google Scholar
  18. 18.
    Hasegawa S, Matsubara M, Shimizu K (1987) Biotechnol Bioeng 30: 703Google Scholar
  19. 19.
    Shimizu K, Kobayashi T, Nagara A, Matsubara M (1985) Biotechnol Bioeng 27: 743Google Scholar
  20. 20.
    Hasegawa S, Shimizu K, Kobayashi T, Matsubara M (1985) J Chem Tech Biotechnol 35B: 33Google Scholar
  21. 21.
    Constantinides A, Spencer JL, Gaden Jr EL (1970) Biotechnol Bioeng 12: 1081Google Scholar
  22. 22.
    Ito T, Sota H, Honda H, Shimizu K, Kobayashi T (1991) Appl Microbiol Biotechnol 36: 295Google Scholar
  23. 23.
    Park YS, Toda K, Fukaya M, Okuhara H, Kawamura Y (1991) Appl Microbiol Biotechnol 35: 149Google Scholar
  24. 24.
    Wang HY, Robinson FM, Lee SS (1981) Biotechnol Bioeng Symp: 555Google Scholar
  25. 25.
    Minier M, Goma G (1982) Biotechnol Bioeng 24: 1565Google Scholar
  26. 26.
    Matsumura M, Markle H (1984) Appl Microbiol Biotechnol 20: 371Google Scholar
  27. 27.
    Taya M, Ishii S, Kobayashi T (1985) J Ferment Technol 63: 181Google Scholar
  28. 28.
    Ishii S, Taya M, Kobayashi T (1985) J Chem Eng Japan 18: 125Google Scholar
  29. 29.
    Honda H, Mano T, Taya M, Shimizu K, Matsubara M, Kobayashi T (1987) Chem Eng Sci 42: 493Google Scholar
  30. 30.
    Holzberg I, Finn RK, Steinkraus KH (1967) Biotechnol Bioeng 9: 413Google Scholar
  31. 31.
    Ghose TK, Tyagi RD (1979) Biotechnol Bioeng 21: 1387Google Scholar
  32. 32.
    Nelder JA, Mead R (1965) Computer J 7: 308Google Scholar
  33. 33.
    Shi Z, Shimizu K, Iijima S, Morisue T, Kobayashi T (1990) Biotechnol Bioeng 36: 520Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Hasegawa
    • 1
  • K. Shimizu
    • 2
  1. 1.Biotechnology Research LaboratoryTosoh CorporationTokyoJapan
  2. 2.Department of Biochemical Engineering and ScienceKyushu Institute of TechnologyFukuokaJapan

Personalised recommendations