Skip to main content

Convective drying of bacteria

II. Factors influencing survival

  • Chapter
  • First Online:
Biotechnics/Wastewater

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 51))

Abstract

In the previous part of this review, the parameters of the drying process that can be important for the survival of bacteria upon drying, were reviewed. In this part the other factors which can be important for survival, will be discussed. The discussion starts with the mechanisms that can be responsible for thermal and dehydration inactivation. Moreover, the influence of storage conditions on the stability of dried bacterial cultures will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwood MC, Russel AD (1970) Adv Appl Microbiol 12: 89

    Google Scholar 

  2. Corry JEL (1973) Progr Ind Microbiol 12: 73

    Google Scholar 

  3. Tomlins RI, Ordal ZJ (1976) In: Skinner FA, Hugo WB (eds) Inhibition and inactivation of vegetative microbes. Academic, London, p 153

    Google Scholar 

  4. Gould GW (1989) In: Gould GW (ed) Mechanisms of action of food preservation procedures. Elsevier, Essex, UK, p 11

    Google Scholar 

  5. Lievense LC, Verbeek MAM, Meerdink G, Van't Riet K (1990) Bioseparation 1: 161

    Google Scholar 

  6. Lievense LC, Van't Riet K (1992) In: Fiechter A (ed) Advances in Biochemical Engineering/Biotechnology, vol. 50, Springer, Berlin Heidelberg New York, p 45

    Google Scholar 

  7. Wagman J (1960) J Bacteriology 80: 558

    Google Scholar 

  8. Heckly RJ (1961) In: WW Umbreit (ed) Advances in applied microbiology. Academic Press, NY, p 1

    Google Scholar 

  9. Heckly RJ (1985) Develop Industrial Microbiol 26: 379

    Google Scholar 

  10. Webb SJ (1969) In: Nei T (ed) Freezing and drying of microorganisms. Univ Tokyo Press, Tokyo, p 153

    Google Scholar 

  11. Ashwood-Smith MJ (1980) In: Ashwood-Smith MJ (ed) Low temperature in medical biology. Pitman Medical, Tunbridge Wells, p 219

    Google Scholar 

  12. Beker MJ, Blumbergs JE, Ventina EJ, Rapoport AI (1984) Eur J Appl Microbiol Biotechnol 19: 347

    Google Scholar 

  13. Beker MJ, Rapoport AI (1987) In: Fiechter A (ed) Advances in Biochemical Engineering/Biotechnology, vol 32, Springer, Berlin Heidelberg New York, p 127

    Google Scholar 

  14. Scott WJ (1958) J Gen Microbiol 19: 624

    Google Scholar 

  15. Morichi T (1974) Jpn Agr Res Quart 8: 171

    Google Scholar 

  16. Mitic S (1976) Cryobiology 13: 214

    Google Scholar 

  17. Franks F (1985) In: Simatos D, Multon JL (eds) Properties of water in foods. Martinus Nijhoff, Dordrecht, The Netherlands, p 1

    Google Scholar 

  18. LeMaguer M (1987) In: Rockland LB, Beuchat LR (eds) Water activity: Theory and applications to food. Marcel Dekker, NY, p 1

    Google Scholar 

  19. Nei T (1973) Cryobiology 10: 403

    Google Scholar 

  20. Bousfield IJ, MacKenzie AR (1976) In: Skinner FA, Hugo WB (eds) Inhibition and inactivation of vegetative microbes. Academic, London, p 329

    Google Scholar 

  21. Josic D (1982) Lebensm-Wiss u Techn 15: 5

    Google Scholar 

  22. Franks F (1986) Cryo-Letters 7: 207

    Google Scholar 

  23. Franks F (1990) Cryo-Letters 11: 93

    Google Scholar 

  24. Brennan M, Wanismail B, Johnson MC, Ray B (1986) J Food Prot 49: 47

    Google Scholar 

  25. Morichi T, Irie R, Yano N, Kembo H (1967) Agr Biol Chem 31: 137

    Google Scholar 

  26. Crowe JH, Crowe LM, Carpenter JF, Aurell Wistrom C (1987) Biochem J 242: 1

    Google Scholar 

  27. Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Cryobiology 27: 219

    Google Scholar 

  28. Genis RB (1989) Biomembranes. Molecular structure and function. Springer, Berlin Heidelberg New York, p 40

    Google Scholar 

  29. Crowe, JH, Spargo BJ, Crowe LM (1987) Proc Natl Acad Sci (Biophysics) 84: 1537

    Google Scholar 

  30. Souzu H (1989) Biochim Biophys Acta 978: 105

    Google Scholar 

  31. Souzu H, Sato M, Kojima T (1989) Biochim Biophys Acta 978: 112

    Google Scholar 

  32. Bullock K, Lightbrown JW (1947) QJ Pharm Pharmacol 20: 312

    Google Scholar 

  33. Sobczak E (1981) Branntweinwirtschaft, July 1981: 218

    Google Scholar 

  34. Rogers LA (1914) J Infect Diseases 14: 100

    Google Scholar 

  35. Foster EM (1962) J Dairy Sci 45: 1290

    Google Scholar 

  36. Yankov YA, Brankova R (1979) Proc European Meat Research Workers 25 (Vol 2): 320

    Google Scholar 

  37. Sapp CW, Hedrick TI (1960) Q Bull Agr Exp Stat Michigan 43: 96

    Google Scholar 

  38. Clement P, Rossi J (1983) Preparation of dried baker's yeat. USA Patent 4.370.420. Societe Industrielle LeSaffre, Paris, France

    Google Scholar 

  39. Divies C, Lenzi P, Beaujeu J, Herault F (1990) Procede de preparation de microorganismes inclus dans des gels sensiblement déshydrates, gels obtenus et leur utilisation pour la préparation de boissoins fermentées. French Patent 2 633 937. Champagne MoËt & Chandon, France

    Google Scholar 

  40. Krallish IL, Damberga BE, Beker MJ (1986) Appl Microbiol Biotechnol 23: 482

    Google Scholar 

  41. Krallish IL, Damberga BE, Beker MJ (1989) Appl Microbiol Biotechnol 31: 194

    Google Scholar 

  42. Zikmanis PB, Kruce RV, Mackare IE, Auzina LP, Beker MJ (1989) Appl Microbiol Biotechnol 31: 191

    Google Scholar 

  43. Gadd GM, Chalmers K, Reed RH (1987) FEMS Microbiol Lett 48: 249

    Google Scholar 

  44. Zikmanis PB, Auzina LP, Auzane SI, Beker MJ (1982) Appl Microbiol Biotechnol 15: 100

    Google Scholar 

  45. Zikmanis PB, Auzane SI, Kruce RV, Auzina LP, Beker MJ (1983) Appl Microbiol Biotechnol 18: 298

    Google Scholar 

  46. Zikmanis PB, Auzane SI, Auzina LP, Margevicha, Beker MJ (1985) Appl Microbiol Biotechnol 22: 265

    Google Scholar 

  47. Wright CT, Klaenhammer TR (1983) J Food Science 48: 773

    Google Scholar 

  48. Orndorff GR, MacKenzie AP (1973) Cryobiology 10: 475

    Google Scholar 

  49. Kilara A, Shahani KM, Das NK (1976) Cultured Dairy Products J, May 1976: 8

    Google Scholar 

  50. Valdez GF, De Giori GS, De Ruiz Holgodo AA, Oliver G (1983) Appl Env Microbiol 45: 302

    Google Scholar 

  51. Valdez GF, De Giori GS, De Ruiz Holgodo AA, Oliver G (1983) Cryobiology 20: 560

    Google Scholar 

  52. Valdez GF, De Giori GS, De Ruiz Holgodo AA, Oliver G (1985) Appl Env Microbiol 49: 413

    Google Scholar 

  53. Splittstoesser DF, Foster EM (1957) Appl Microbiol 5: 333

    Google Scholar 

  54. Webb SJ (1961) Can J Microbiol 7: 621

    Google Scholar 

  55. Crowe LM, Crowe JH (1988) Biochim Biophys Acta 946: 193

    Google Scholar 

  56. Lee CWB, Das Gupta SK, Mattai J, Shipley GG, Abdel-Mageed OH, Makriyannis A, Griffin RG (1989) Biochem 28: 5000

    Google Scholar 

  57. Langejan A (1980) Active dried baker's yeast. USA Patent 4.217.420. Gist-brocades, Delft, The Netherlands

    Google Scholar 

  58. Pomper S, Cole G, Scheinbach S (1988) Rehydratable instant active dried yeast. USA Patent 4.764.472. Nabisco Brands Inc, Parsippany, NJ, USA

    Google Scholar 

  59. Porubcan RS, Sellars RL (1975) Stabilized dry cultures of lactic acid producing bacteria. USA Patent 3.897.307. Chr Hansen's Lab Inc, Milwaukee, Wis, USA

    Google Scholar 

  60. Porubcan RS, Sellars RL (1979) In: Peppler HJ, Perlman D (eds) Microbial technology. Acacemic, London, p 59

    Google Scholar 

  61. De Paz M, Chavarri FJ, Nufiez M (1988) Biotechnol Techniques 2: 165

    Google Scholar 

  62. Bozoglu TF, özilgen M, Bakir U (1987) Enzyme Microb Technol 9: 531

    Google Scholar 

  63. Schweigart F (1971) Lebensm-Wiss u Techn 4: 20

    Google Scholar 

  64. Freeman RR, Tschernitz JL, Marshall WR (1964) Biotechn Bioeng 6: 473

    Google Scholar 

  65. Masters K (1985) Spray drying handbook. George Godwin, London, p 630

    Google Scholar 

  66. Labuza TP, Le Roux JP, Fan TS, Tannenbaum SR (1970) Biotechn Bioeng 12: 135

    Google Scholar 

  67. Comings EW, Higa H, Myers JE, Koffler H, McLain HA (1977) Ind Eng Chem Fundam 16: 12

    Google Scholar 

  68. Espina F, Packard VS (1979) J Food Prot 42: 149

    Google Scholar 

  69. Marino C, Curto M, Bruno R, Rinaudo MT (1989) Int J Biochem 21: 1369

    Google Scholar 

  70. Zimmermann K (1987) Einflussparameter und mathematische modellierung der schonenden trocknung von starterkulturen. Fortschr-Ber VDI (Reihe 14, no 36), VDI-Verlag, Düsseldorf, West Germany

    Google Scholar 

  71. Kuts PS, Tutova EG (1983) Drying Techn 2: 171

    Google Scholar 

  72. Lievense LC, Verbeek MAM, Taekema T, Meerdink G, Van't Riet K (1992) Chem Eng Sci. 47: 82

    Google Scholar 

  73. Valdez GF, De Giori GS, De Ruiz Holgodo AA, Oliver G (1985) Cryobiology 22:574

    Google Scholar 

  74. Strange RE, Cox CS (1976) In: Gray TRG, Postgate JR (eds) The survival of vegetative microbes. Cambridge Univ Press, Cambridge, UK, p 111

    Google Scholar 

  75. Ray B, Jezeski JJ, Busta FF (1971) Appl Microbiol 22: 401

    Google Scholar 

  76. Hambleton P (1971) J Gen Microbiol 69: 81

    Google Scholar 

  77. Valdez GF, De Giori GS, De Ruiz Holgodo AA, Oliver G (1985) Milchwiss 40: 518

    Google Scholar 

  78. Valdez GF, De Giori GS, De Ruiz Holgodo AA, Oliver G (1986) Milchwiss 41: 286

    Google Scholar 

  79. Valdez GF, De Giori GS, De Ruiz Holgodo AA, Oliver G (1985) Milchwiss 40: 147

    Google Scholar 

  80. Mahmoud MID, El Gammal SA, Hussein AA (1982) Zbl Mikrobiol 137: 233

    Google Scholar 

  81. Alaeddinoglu G, Güven A, özilgen M (1989) Enzyme. Microb Technol 11: 765

    Google Scholar 

  82. Lal M, Tiwari MP, Sinha RN, Ranganathan B (1976) J Food Sci Techn India 13: 266

    Google Scholar 

  83. Anil Kumar PA, Gandhi DN (1982) Asian J Dairy Res 1: 283

    Google Scholar 

  84. Liepe HU, Junker M (1982) Arch Lebensmittelhygiene 32: 141

    Google Scholar 

  85. Tsetkov TS, Brankova R (1983) Cryobiology 20: 318

    Google Scholar 

  86. Clementi F, Rossi J (1984) Am J Enol Vitic 35: 181

    Google Scholar 

  87. Stadhouders J, Jansen LA, Hup G (1969) Neth Milk Dairy J 23: 182

    Google Scholar 

  88. Lehmann D (1984) ZFL 1984, No 2: 113

    Google Scholar 

  89. Hill FF (1987) Alimenta 1987 No 3: 73

    Google Scholar 

  90. Prajapati JB, Shah RK, Dave JM (1987) Austr J Dairy Technol March/June 1987: 17

    Google Scholar 

  91. Jung G (1988) Inocula of low water activity with improved resistance to temperature and rehydration and preperation thereof. USA Patent 4.755.468. Rhone-Poulenc SA, Paris, France

    Google Scholar 

  92. Heckly RJ (1978) In: Crowe JH, Glegg JJ (eds) Dry Biological Systems. Academic, NY, p 257

    Google Scholar 

  93. Sinha RN, Dudani AT, Ranganathan B (1974) J Food Science 39: 641

    Google Scholar 

  94. Korobkina GS, Brents MY, Kalinina NN, Vorob'eva VM, Shamanova GP (1982) Dairy Sci Abs 44: 396

    Google Scholar 

  95. Hill FF (1986) In: Chmiel H, Hammes WP, Bailey JE (eds) Biochemical Engineering: a challenge for interdisciplinary cooperation. Int Congress Stuttgart Sept 1986. VCH Publishers, NY, p 199

    Google Scholar 

  96. Kim HS, Kamara BJ, Good IC, Enders GL (1988) J Industrial Microbiol 3: 253

    Google Scholar 

  97. Shahani KM, Kilara A (1974) J Dairy Sci 58: 579

    Google Scholar 

  98. Nachmoush MR, Girgis ES, Guiguis AH, Fahmi AH (1978) Egyptian J Dairy Sci 6: 39

    Google Scholar 

  99. Nikolova N (1978) Proc 20th Int Dairy Congress, Paris, France: 584

    Google Scholar 

  100. Gehrman SH, Porubcan RS (1985) Stabilized liquid bacterial suspensions for oral administration to animals. USA Patent 4.518.696. Chr Hansen's Lab Inc, Milwaukee, Wis, USA

    Google Scholar 

  101. Levine H, Slade L (1989) In: Hardman TM (ed) Water and food quality. Elsevier, London, p 71

    Google Scholar 

  102. Franks F (1989) Process Biochem 24, No 1 (Suppl ProBioTech): R3

    Google Scholar 

  103. Pearce DA, Rose AH, Wright IP (1989) Yeast 5: s453 (Special issue: Proc 7th Int Symp on Yeast)

    Google Scholar 

  104. Roser B (1991) Trends in Food Sci Technol 2: 166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Lievense, L.C., van't Riet, K. (1994). Convective drying of bacteria. In: Biotechnics/Wastewater. Advances in Biochemical Engineering/Biotechnology, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008734

Download citation

  • DOI: https://doi.org/10.1007/BFb0008734

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57319-7

  • Online ISBN: 978-3-540-48062-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics