Advertisement

Evaluation of biomass

  • A. Singh
  • R. C. Kuhad
  • V. Sahai
  • P. Ghosh
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 51)

Abstract

Evaluation of biomass concentration is an important problem encountered in many microbial and other bioprocesses. It determines the catalytic activity of the microbial cell in a given time. Various direct and indirect methods for the estimation of biomass have been developed using physical and biochemical techniques. Despite many promising classical methods available, the evaluation of microbial growth in bioprocesses may sometimes become laborious, impracticable and give erroneous values. Various methods for enumeration of organisms and determination of biomass, including recent developments in monitoring biomass concentration for the control of biotechnological processes, are discussed taking into the consideration their practical importance, usefulness and constraints in application.

Keywords

Microbial Biomass Biomass Concentration Fungal Biomass Soil Biol Much Probable Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olsen RA, Bakken IR (1987) Microb Ecol 13: 59Google Scholar
  2. 2.
    White DC (1986) Arch Hydrobiol 31: 1Google Scholar
  3. 3.
    Paul EA, Ladd JN (eds) (1981) Soil biochemistry, vol 5, Marcel Dekker, New York, p 415Google Scholar
  4. 4.
    Wang HY (1984) Biotechnol Bioeng Symp 14: 601Google Scholar
  5. 5.
    Graham A, Moo-Young M (1985) Biotechnol Adv 3: 209Google Scholar
  6. 6.
    Roberts RB, Abelson PH, Cowie DB, Bolton ET, Britten RJ (1955) Studies on the biosynthesis in Escherichia coli. Carnegie Institute Pub. 607, WashingtonGoogle Scholar
  7. 7.
    Powell EO (1963) J Sci Food Agric 14: 1Google Scholar
  8. 8.
    Hobson PN, Mann S (1970) Automation, mechanization and data handling in microbiology. Academic, LondonGoogle Scholar
  9. 9.
    Pirt SJ (1975) Principles of Microbe and Cell Cultivation, Blackwell Scientific, OxfordGoogle Scholar
  10. 10.
    Collee JG, Duguid JP, Fraser AG, Marrison BP (1980) Practical medical microbiology, 13th edn. Churchill Livingstone, LondonGoogle Scholar
  11. 11.
    Meyenell GG, Meyenell E (1970) Theory and Practice in Experimental Bacteriology. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Cruickshank R, Duguid DM, Chih-Hua W (1975) Medical microbiology, 12th edn. Churchill Livingstone, EdinburghGoogle Scholar
  13. 13.
    Jones JG (1979) A guide to methods of estimating microbial numbers and biomass in fresh water. Biological Association, WindermereGoogle Scholar
  14. 14.
    Taylor J (1962) J Appl Bacteriol 25: 54Google Scholar
  15. 15.
    American Public Health Association (1976) Standard methods of the examination of water and wastewater, 14 edn. WashingtonGoogle Scholar
  16. 16.
    Macfarlane GT, Herbert RA (1984) J Gen Microbiol 130: 2301Google Scholar
  17. 17.
    Battersby NA, Stewart, DJ, Sharma AP (1985) J Appl Bacteriol 58: 425Google Scholar
  18. 18.
    Clarke KR, Owens NJP (1983) J Microbiol Meth 1: 133Google Scholar
  19. 19.
    Austin B (ed) (1988) Methods in aquatic microbiology. John Wiley, Chichester, p 27Google Scholar
  20. 20.
    Hobbie JE, Daley RJ, Jasper S (1977) Appl Environ Microbiol 33: 1225Google Scholar
  21. 21.
    Zimmerman R (1977) In: Rheinheimer G (ed) Microbiol ecology of a brackish water environment. Springer, Berlin Heidelberg, New York, p 103Google Scholar
  22. 22.
    Daley RJ (1979) In: Costerton JW, Colwell RR (eds) Native aquatic bacteria: Enumeration, activity and ecology. American Society of Testing and Materials, PhiladelphiaGoogle Scholar
  23. 23.
    Wynn-Williams DD (1985) Soil Biol Biochem 17: 739Google Scholar
  24. 24.
    Fry JC (1990) Meth Microbiol 22: 41Google Scholar
  25. 25.
    Björnsen PK (1978) Appl Environ Microbiol 36: 584Google Scholar
  26. 26.
    Schmid EL (1973) Bull Ecol Res Comm 17: 67Google Scholar
  27. 27.
    Szwerinski H, Gaiser S, Dardtke D (1985) Appl Microbiol Biotechnol 21: 125Google Scholar
  28. 28.
    Belser LW, Schmid EL (1978) Appl Environ Microbiol 36: 584Google Scholar
  29. 29.
    Smith AD (1988) Arch Microbiol 133: 118Google Scholar
  30. 30.
    Bohlool BB, Schmid EL (1973) Bull Ecol Res Comm 17: 336Google Scholar
  31. 31.
    Bobowski S, Nedwell DB (1987) In: Hopton JW, Hill EC, Industrial microbiological testing, Blackwell Scientific, Oxford, p 171Google Scholar
  32. 32.
    Engvall E, Perlman P (1971) Immunochemistry 8: 871Google Scholar
  33. 33.
    Evans JH, McGill SM (1969) Hydrobiologia 35: 401Google Scholar
  34. 34.
    Sheldon RW, Parsons TR (1967) A practical manual on the use of the Coulter counter in marine science. Coulter Electronics, Canada LtdGoogle Scholar
  35. 35.
    Sieburth JM (1979) Sea microbes. Oxford University Press, New YorkGoogle Scholar
  36. 36.
    Kubitschek HE (1969) Meth Microbiol 1: 593Google Scholar
  37. 37.
    Krambeck C, Krambeck H-J, Overbeck J (1981) Appl Environ Microbiol 42: 142Google Scholar
  38. 38.
    Watson SW, Novisky JJ, Quinby HL, Valois FW (1977) Appl Environ Microbiol 33: 940Google Scholar
  39. 39.
    Borsheim M, Bratbak G, Heldal M (1990) Appl Environ Microbiol 56: 352Google Scholar
  40. 40.
    Heldal M, Norland S, Tumyr O (1985) Appl Environ Microbiol 50: 1251Google Scholar
  41. 41.
    Moo-Young M, Moreira AR, Tengerdy RP (1983) The filamentous fungi, vol 4. Edward Arnold, London, p 117Google Scholar
  42. 42.
    Moreira AR, Phillips JA, Humphrey AE (1978) Biotechnol Bioeng 21: 1501Google Scholar
  43. 43.
    Holme NA, McIntyre AD (1977) Methods for the study of the marine benthos. Blackwell Scientific, OxfordGoogle Scholar
  44. 44.
    Chattopadhyay NC, Nandi B (1977) Phytopath Z 89: 256Google Scholar
  45. 45.
    Peach K, Tracey MV (1955) Modern methods of plant analysis. Springer, Berlin Heidelberg New York, p 246Google Scholar
  46. 46.
    Wang DIC, Cooney CL, Demain AL, Dunnill P, Humphrey AE, Lilly MD (1979) Fermentation and enzyme technology. John Wiley, New YorkGoogle Scholar
  47. 47.
    Garg SK, Neelkantan S (1982) Biotechnol Bioeng 24: 2407Google Scholar
  48. 48.
    Lang CA (1958) Anal Chem 30: 1692Google Scholar
  49. 49.
    Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) MIRCEN J Appl Microbiol Biotechnol 4: 473Google Scholar
  50. 50.
    Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Biol Mem 14: 53Google Scholar
  51. 51.
    McDonald AMG (1963) Ind Chem 39: 265Google Scholar
  52. 52.
    Benett EO, Williams RP (1957) Appl Microbiol 5: 14Google Scholar
  53. 53.
    Hosler P, Johnson MJ (1953) Ind Eng Chem 45: 871Google Scholar
  54. 54.
    Galnous DS, Kapoulos A (1966) Anal Chim Acta 34: 360Google Scholar
  55. 55.
    Swift MJ (1973) Soil Biol Biochem 5: 321Google Scholar
  56. 56.
    Swift MJ (1973) Bull Ecol Res Comm 17: 323Google Scholar
  57. 57.
    Chen GC, Johnson BR (1982) Appl Environ Microbiol 46: 13Google Scholar
  58. 58.
    Hicks RE, Newell SY (1984) Oikos 42: 355Google Scholar
  59. 59.
    Kumar PKR, Lonsane BK (1987) Biotechnol Bioeng 34: 276Google Scholar
  60. 60.
    Frankland JC, Lindley DK, Swift MJ (1978) Soil Biol Biochem 10: 323Google Scholar
  61. 61.
    Ride JP, Drysdale RB (1971) Physiol Plant Pathol 1: 409Google Scholar
  62. 62.
    Ride JP, Drysdale RB (1972) Physiol Plant Pathol 2: 7Google Scholar
  63. 63.
    Sharma PO, Fisher PJ, Webster JP (1977) Trans Br Mycol Soc 69: 479Google Scholar
  64. 64.
    King JD, White DC (1977) Appl Environ Microbiol 33: 777Google Scholar
  65. 65.
    Miller WN, Casida LE (1970) Can J Microbiol 16: 299Google Scholar
  66. 66.
    Casergrande DJ, Park K (1978) Soil Sci 125: 181Google Scholar
  67. 67.
    Gunnarsson T, Tunlid A (1986) Soil Biol Biochem 18: 595Google Scholar
  68. 68.
    Tunlid A, Odham G (1983) J Microbiol Meth 1: 63Google Scholar
  69. 69.
    Moriarty DWJ (1983) J Microbiol Meth 1: 111Google Scholar
  70. 70.
    Ellwood, DC, Tempest DW (1972) Adv Microb Physiol 7: 83Google Scholar
  71. 71.
    Schleifer KH, Kandler O (1972) Bacteriol Rev 36: 407Google Scholar
  72. 72.
    White DC, Davies WM, Nickels JA, King JD, Bobbie RJ (1979) Oecologia 40: 51Google Scholar
  73. 73.
    Slater JH, Whittenbury EJ, Wimphery JNT (eds) (1983) Microbes in their natural environments. Society of General Microbiology, p 37Google Scholar
  74. 74.
    Gehron MI, White DC (1983) J Microbiol Meth 1: 23Google Scholar
  75. 75.
    Blakwill DL, Leach FR, Wilson, JT, McNabb JF, White DC (1988) Microb Ecol 16: 73Google Scholar
  76. 76.
    Kates M (1964) Adv Lipid Res 2: 17Google Scholar
  77. 77.
    Wossef MK (1977) Adv Lipid Res 15: 159Google Scholar
  78. 78.
    Kowalenko CG, McKercher RB (1970) Soil Biol Biochem 2: 269Google Scholar
  79. 79.
    Lechevalier MP (1977) Crit Rev Microbiol 7: 109Google Scholar
  80. 80.
    White DC, Tucker AN (1969) J Lipid Res 10: 220Google Scholar
  81. 81.
    Nannipieri P, Johnson RL, Paul EA (1978) Soil Biol Biochem 10: 223Google Scholar
  82. 82.
    Logal DM (1988) In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 7. Academic, London, p 699Google Scholar
  83. 83.
    Grant WD, West AW (1986) J Microbiol Meth 6: 47Google Scholar
  84. 84.
    Nes WR (1977) Lipid Res 15: 233Google Scholar
  85. 85.
    Matcham SE, Jordan BR, Wood DA (1985) Appl Microbiol Biotechnol 21: 108Google Scholar
  86. 86.
    Ford SR, Webster JJ, Leach FR (1985) Soil Biol Biochem 17: 811Google Scholar
  87. 87.
    Suzuki M, Mikami T, Matsumoto T, Suzuki S (1977) Microbiol Immunol 21: 419Google Scholar
  88. 88.
    Saddler JN, Wardlow AC (1980) Antonie von Leeuwenhoek J Microbiol 46: 27Google Scholar
  89. 89.
    Karl DM (1980) Microbiol Rev 44: 739Google Scholar
  90. 90.
    Thiery A, Chicheportiche R (1988) Appl Microbiol Biotechnol 28: 199Google Scholar
  91. 91.
    Deming JW, Picciolo GL, Chappelle EW (1979) In: Costeron JW, Colwell RR (eds) Native aquatic bacteria: Enumeration, activity and ecology. American Society of Testing and Materials, Philadelphia, p 88Google Scholar
  92. 92.
    Karl DM, Holm-Hanson O (1976) Anal Biochem 75: 100Google Scholar
  93. 93.
    Gray TRG, Hissel R, Duxbury T (1974) Rev Ecol Biol Soil 11: 15Google Scholar
  94. 94.
    Cochet N, Tyagi RD, Ghose TK, Lebeault JM (1984) Biotechnol Lett 6: 155Google Scholar
  95. 95.
    Kavanagh F (ed) (1963) Analytical microbiology, Academic, New YorkGoogle Scholar
  96. 96.
    Calam CT (1969) Meth Microbiol 1: 567Google Scholar
  97. 97.
    Previt JJ (1972) Appl Microbiol 24: 535Google Scholar
  98. 98.
    Harris D (1979) In: Grossbard E (ed) Straw decay and its effects on utilization and disposal. John Wiley, Chichester, p 265Google Scholar
  99. 99.
    Siegmund D, Diekman H (1989) Appl Microbiol Biotechnol 32: 32Google Scholar
  100. 100.
    Volesky B, Yerushalmi L, Luong JHT (1982) J Chem Technol Biotechnol 32: 650Google Scholar
  101. 101.
    Luong JHT, Yerushalmi L, Volesky B (1983) Enzyme Microb Technol 5: 291Google Scholar
  102. 102.
    Zimmerman R, Itturiaga R, Backer-Birck J (1978) Appl Environ Microbiol 36: 926Google Scholar
  103. 103.
    Dutton RJ, Bitton G, Koopman B (1983) Appl Environ Microbiol 46: 1263Google Scholar
  104. 104.
    Lopez JM, Koopman B, Bitton G (1986) Biotechnol Bioeng 28: 1080Google Scholar
  105. 105.
    Patton AM, Jones SM (1975) J Appl Bacteriol 38: 199Google Scholar
  106. 106.
    Ramsay AJ (1984) Soil Biol Biochem 16: 475Google Scholar
  107. 107.
    Baath E (1988) Soil Biol Biochem 20: 123Google Scholar
  108. 108.
    Postgate JR (1969) Meth Microbiol 11: 611Google Scholar
  109. 109.
    Painting K, Kirsop B (1990) World J Microbiol Biotechnol 6: 346Google Scholar
  110. 110.
    Combrier E, Matezean P, Ronot X, Gachelin H, Adolphe M (1989) Cytotechnol 2: 27Google Scholar
  111. 111.
    Sonnleitner B, Fiechter A (1989) GBF Monogr 13: 75Google Scholar
  112. 112.
    Locher G, Sonnleitner B, Fiechter A (1990) Biopr. Eng. 5: 181Google Scholar
  113. 113.
    Locher G, Sonnleitner B, Fiechter A (1991) J Biotechnol 19: 127Google Scholar
  114. 114.
    Sonnleitner B, Locher G, Fiechter A (1991) J Biotechnol 19: 1Google Scholar
  115. 115.
    Locher G, Sonnleitner B, Fiechter A (1992) J Biotechnol 25: 23Google Scholar
  116. 116.
    Picque D, Corrieu G (1988) Biotechnol Bioeng 31: 19Google Scholar
  117. 117.
    Schügerl K, Lübbert A, Scheper T (1987) Chem Ing-Tech 59: 701Google Scholar
  118. 118.
    Rohner M, Locher G, Sonnleitner B, Fiechter A (1989) J Biotechnol 9: 11Google Scholar
  119. 119.
    Arnold MA, Ostler TJ (1988) Crit Rev Anal Chem 20: 149Google Scholar
  120. 120.
    Schügerl K (1991) Analytische Methoden in der Biotechnologie. Vieweg, BraunschweigGoogle Scholar
  121. 121.
    Münch T, Sonnleitner B, Fiechter A (1992) J Biotechnol 22: 329Google Scholar
  122. 122.
    Münch T, Sonnleitner B, Fiechter A (1992) J Biotechnol 24: 299Google Scholar
  123. 123.
    Battley EH (1960) Physiol Plant 13: 628Google Scholar
  124. 124.
    Boe I, Loverien R (1990) Biotechnol Bioeng 35: 1Google Scholar
  125. 125.
    Eriksson R, Holme J (1977) Flow microcalorimetry applied to microbial processes. LKB Application Note No. 267, LKB Produkter AB, StockholmGoogle Scholar
  126. 126.
    Shaarachmidt B, Lamprecht I (1976) Experientia 32: 1230Google Scholar
  127. 127.
    Lamprecht I (1980) Growth and metabolism in yeast. In: Beezer AE (ed) Biological microcalorimetry. Academic, London, p 43Google Scholar
  128. 128.
    Miles RJ, Beezer AE, Perry BF (1987) Growth and metabolism of yeast. In: James AM (ed) Thermal and energetic studies of cellular biological systems. John Wright, Bristol, p 106Google Scholar
  129. 129.
    Cooney CL, Wang DIC, Mateles RJ (1968) Biotechnol Bioeng 11: 269Google Scholar
  130. 130.
    Mou D-G, Cooney CL (1976) Biotechnol Bioeng 18: 1371Google Scholar
  131. 131.
    Wang H, Wang DIC, Cooney CL (1978) Eur J Appl Microbiol Biotechnol 5: 207Google Scholar
  132. 132.
    Marison IW, Biron B, von Stockar U (1985) Thermochim Acta 85: 493Google Scholar
  133. 133.
    Volesky B, Luong HT, Thambimuthu KB (1978) Can J Chem Eng 56: 534Google Scholar
  134. 134.
    Luong JHT, Volesky B (1982) Can J Chem Eng 60: 163Google Scholar
  135. 135.
    Fardeau M-L, Plasse F, Belaich JP (1980) Eur J Appl Microbiol Biotechnol 10: 133Google Scholar
  136. 136.
    Gustafsson K, Gustafsson L (1985) J Microbiol Meth 4: 103Google Scholar
  137. 137.
    von Stockar U, Marison IW, Birou B (1988) On-line calorimetry for process control. In: 1st Swiss-Japanese Joint Meeting on Bioprocess Development, Interlaken, SwitzerlandGoogle Scholar
  138. 138.
    Zabriskie DW, Humphrey AE (1978) Appl Environ Microbiol 35: 337Google Scholar
  139. 139.
    Scheper T, Lorenz T, Schmid W, Schügerl K (1986) J Biotechnol 3: 231Google Scholar
  140. 140.
    Meyer HP, Beyeler W, Fiechter A (1984) J Biotechnol 1: 341Google Scholar
  141. 141.
    Armiger WB, Forro JF, Montalavo LM, Lee JF (1989) Chem Eng Comm 45: 197Google Scholar
  142. 142.
    Leist C, Meyer HP, Fiechter A (1986) J Biotechnol 4: 235Google Scholar
  143. 143.
    Reardon KF, Scheper T, Bailey JE (1987) Biotechnol prog 3: 153Google Scholar
  144. 144.
    Siano SA, Muthrasan R (1991) Biotechnol Bioeng 37: 141Google Scholar
  145. 145.
    Walker CC, Dhurjati P (1989) Biotechnol Bioeng 33: 500Google Scholar
  146. 146.
    Sonnleitner B, Locher G, Fiechter A (1992) J Biotechnol 25: 5Google Scholar
  147. 147.
    Taya M, Yoshikawa M, Kobayashi T (1989) J Chem Eng Japan 22: 89Google Scholar
  148. 148.
    Beyeler W, Einsele A, Fiechter A (1981) Eur J Appl Microbiol Biotechnol 13: 10Google Scholar
  149. 149.
    Müller W, Wehnert G, Scheper T (1988) Anal Chim Acta 213: 47Google Scholar
  150. 150.
    van Bruggen JJA, Stum CK, Vogels GD (1983) Arch Microbiol 136: 89Google Scholar
  151. 151.
    van Bruggen JJA, Stum CK, Zwart KB, Vogels GD (1985) FEMS Microb Ecol 31: 187Google Scholar
  152. 152.
    Peck MW, Chynoweth DP (1990) Biotechnol Lett 10: 17Google Scholar
  153. 153.
    Peck MW, Chynoweth DP (1992) Biotechnol Bioeng 39: 1151Google Scholar
  154. 154.
    Richards JCS, Jason AC, Hobbs G, Gibson DM, Christie RH (1978) J Phys 11: 560Google Scholar
  155. 155.
    Hagen D (1990) Proc Biochem 25: 4Google Scholar
  156. 156.
    Fehrenbach R, Comberbach M, Petre JO (1992) J Biotechnol 23: 303Google Scholar
  157. 157.
    Davey CL, Penaloza W, Kell DB, Hedger JN (1991) World J Microbiol Biotechnol 7: 248Google Scholar
  158. 158.
    Markx GH, Ten Hoopen HJG, Meijer JJ, Vinke KL (1991) J Biotechnol 19: 145Google Scholar
  159. 159.
    Connolly P, Lewis SJ, Corry JEL (1988) J Food Microbiol 7: 3Google Scholar
  160. 160.
    Taya M, Hegglin M, Prenosil JE, Bourne JR (1989) Enzyme Microb Technol 11: 170Google Scholar
  161. 161.
    Evans HAV (1982) J Appl Bacteriol 53: 423Google Scholar
  162. 162.
    Ebina Y, Ekida M, Hoshimoto H (1989) Biotechnol Bioeng 33: 1290Google Scholar
  163. 163.
    Henschkke PA, Thomas DS (1988) J Appl Bacteriol 64: 123Google Scholar
  164. 164.
    Harris CM, Kell DB (1985) Biosensors 1: 17Google Scholar
  165. 165.
    Sakoto K, Tanaka H, Samejima H (1981) Ann NY Acad Sci 369: 321Google Scholar
  166. 166.
    Ding T, Schmid RD (1990) Anal Chim Acta 234: 237Google Scholar
  167. 167.
    Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG, Kell DB (1987) Enzyme Microb Technol 9: 181Google Scholar
  168. 168.
    Kell D, Markx GH, Davey CL, Todd RW (1990) Trend Anal Chem 9: 190Google Scholar
  169. 169.
    Hong K, Tanner RD, Malaney GW, Wilson DJ (1987) Proc Biochem 22: 149Google Scholar
  170. 170.
    Geppert G, Thielemann H, Langkopf G (1989) Acta Biotechnol 9: 541Google Scholar
  171. 171.
    Iijima S, Yamashita S, Matsunaga K, Miura H, Morikawa M (1987) J Chem Technol Biotechnol 40: 203Google Scholar
  172. 172.
    Nielsen J, Nikolajsen K, Benthia S, Villadsen J (1990) Anal Chim Acta 237: 165Google Scholar
  173. 173.
    Valero F, Lafuente J, Poch M, Sola C (1990) Appl Biochem Biotechnol 24: 591Google Scholar
  174. 174.
    Heinzle E, Moes J, Griot M, Sandmeier E, Dunn IJ, Bucher R (1986) Ann NY Acad Sci 469: 178Google Scholar
  175. 175.
    Wilson PDG (1987) Biotechnol Tech 1: 151Google Scholar
  176. 176.
    Roels JA (1980) Biotechnol Bioeng 27: 2457Google Scholar
  177. 177.
    Locher G, Sonnleitner B, Fiechter A (1992) J Biotechnol 25: 55Google Scholar
  178. 178.
    StrÄssle C, Sonnleitner B, Fiechter A (1988) J Biotechnol 7: 299Google Scholar
  179. 179.
    StrÄssle C, Sonnleitner B, Fiechter A (1989) J Biotechnol 9: 191Google Scholar
  180. 180.
    Park SH, Hong KJ, Lee JH, Bae JC (1983) Eur J Appl Microbiol Biotechnol 17: 168Google Scholar
  181. 181.
    Sonnleitner B (1991) Bioproc Eng 6: 187Google Scholar
  182. 182.
    Sonnleitner B, Fiechter A (1992) Adv Biochem Eng/Biotechnol 46: 143Google Scholar
  183. 183.
    Chattaway T, Demain AL, Stephanopoulos G (1992) Biotechnol Prog 8: 81Google Scholar
  184. 184.
    Thomas DC, Chittur VK, Cagney JW, Lim HC (1985) Biotechnol Bioeng 27: 729Google Scholar
  185. 185.
    Reuss M, Boelcke C, Lenz R, Peckman U (1987) Biotech Forum 4: 3Google Scholar
  186. 186.
    Blake-Coleman BC, Clarke DJ, Calder MR, Moody SC (1986) Biotechnol Bioeng 28: 1241Google Scholar
  187. 187.
    Clarke DJ, Blake-Coleman BC, Carr RJG, Calder MR, Atkinson T (1986) Trend Biotechnol 4: 173Google Scholar
  188. 188.
    Kilburn DG, Fitzpatrick P, Blake-Coleman BC, Clarke DJ, Griffiths JB (1989) Biotechnol Bioeng 33: 1379Google Scholar
  189. 189.
    Cavinato AG, Ge Z, Mayes DM, Callis JB (1990) A biomass sensor based on visible and short wavelength near infrared spectroscopy, 3rd International Symposium Analytical Methods in Biotechnology, San FranciscoGoogle Scholar
  190. 190.
    Gordon SH, Greene RV, Freer SN, James C (1990) Biotechnol Appl Biochem 12: 1Google Scholar
  191. 191.
    Manoharan R, Ghiamati E, Dalterio RA, Britton KA, Nelson WH, Sperry JF (1990) J Microbiol Meth 11: 1Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Singh
    • 1
  • R. C. Kuhad
    • 2
  • V. Sahai
    • 1
  • P. Ghosh
    • 1
  1. 1.Department of Biochemical Engineering & BiotechnologyIndian Institute of TechnologyNew DelhiIndia
  2. 2.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations