Skip to main content

Modelling, identification and control of the activated sludge process

  • Conference paper
  • First Online:
Lignocellulosic Materials

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 38))

Abstract

Practical experience shows that the efficiency and reliability of the activated sludge wastewater treatment process can be significantly improved if its time-varying nature is taken into account in the design of automatic control systems. This paper focuses on the dynamic aspects of the activated sludge treatment process and assesses the operational improvements brought about by automatic control. The three aspects of modelling, identification and control are reviewed and their interdependence is stressed. After introducing a simplified model for the pollutant/biomass interaction, the estimation and control problems are addressed and practical algorithms are discussed. The improvements brought about by such algorithms are clearly demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

secondary settler cross section [m2]

C:

dissolved oxygen concentration [mg l−1]

Ci :

input dissolved oxygen concentration [mg l−1]

Csp :

dissolved oxygen set-point [mg l−1]

Csat :

dissolved oxygen saturation value [mg l−1]

D:

dissolved oxygen deficit [mg l−1]

F:

total setting flux [kg m−2 h−1]

Fm :

food-to-mass ratio [kg g−1 d−1] (BOD per MLSS per time)

h:

sampling interval [h]

hb :

sludge blanket height [m]

Ka :

air transfer coefficient [Nm−3]

Kb :

substrate decay rate (SML) [mg−1 l h−1]

Kc :

biomass specific growth rate (SML) [mg−1 l h−1]

Kd :

microbial decay rate (Monod) [h−1]

Km :

biomass endogeneous metabolism rate (SML) [h−1]

Kn :

nitrifiers decay rate [h−1]

Ko :

dissolved oxygen half-velocity constant [mg l−1]

Ks :

half-velocity constant (Monod) [mg l−1]

Kam :

ammonium-nitrogen half-velocity constant [mg l−1]

KLa:

oxygen diffusion rate coefficient [h−1]

M:

accumulated biomass in the settler [kg]

Na :

nitrate-nitrogen concentration [mg l−1]

n, a:

batch flux settling curve parameters [−]

Q:

process hydraulic flow rate [m3 h−1]

q:

dilution rate [h−1]

r, w:

recycle and waste flow fractions [−]

S:

substrate (BOD) concentration [mg L−1]

Si :

input substrate (BOD) concentration [mg l−1]

Sam :

ammonium-nitrogen concentration [mg l−1]

Sexp, Xexp, Cexp :

substrate, biomass, and DO measurements [mg l−1]

t, t1 :

time [h]

Ua :

air flow rate [Nm3 h−1]

u:

settling sludge bulk settling velocity [m h−1]

X:

biomass concentration [mg l−1]

Xa :

settler sludge density above sludge blanket [mg l−1]

Xb :

settler sludge density below sludge blanket [mg l−1]

Xe :

sludge concentration in the effluent [mg l−1]

Xn :

nitrifying bacteria concentration [mg l−1]

Xr :

recycle biomass concentration [mg l−1]

Xsp :

sludge set-point [g l−1]

Y:

yield factor (Monod) [−]

Ya :

nitrifiers yield factor [−]

θ:

hydraulic retention time [h]

θc :

solids retention time (sludge age) [d]

µ:

maximum specific growth rate (Monod) [h−1]

µn :

nitrifiers maximum specific growth rate [h−1]

γe :

oxygen utilization coefficient for endogenous metabolism [−]

γn :

oxygen utilization coefficient for nitrification [−]

γs :

oxygen utilization coefficient for synthetic activities [−]

ζ:

feed height above settle bottom [m]

BOD:

biochemical oxygen demand [mg l−1]

DO:

dissolved oxygen [mg l−1]

LS:

least squares estimation algorithm

MLSS:

mixed liquor suspended solids [mg l−1], as a global measure of biomass in the activated sludge plant

OUR:

oxygen uptake rate [mg l−1 h−1]

SCOUR:

specific oxygen uptake rate [mg g−1 h−1]

SML:

substrate/biomass reduced-order model, after the author's initials

References

  1. Andrews, J. F.: Water Research 6, 319 (1972)

    Google Scholar 

  2. Andrews, J. F.: ibid. 6, 575 (1972)

    Google Scholar 

  3. Andrews, J. F.: ibid. 8, 261 (1974)

    Google Scholar 

  4. Busby, J. B. and Andrews, J. F.: J. WPCF 47, 1055 (1975)

    Google Scholar 

  5. Andrews, J. F.: Development of control strategies for waste-water treatment plants, in: Progress in Water Technology (eds. Andrews, J. F., Briggs, R. and Jenkins, S. H.), p. 233, Pergamon Press, Oxford 1974

    Google Scholar 

  6. Andrews, J. F., Stenstrom, M. K. and Burr, H. O.: Prog. Wat. Tech. 8, 41 (1976)

    Google Scholar 

  7. Olsson, G.: Activated sludge dynamics I: Biological Models, Report 7511 (C), Lund Institute of Technology, p. 88 (1975)

    Google Scholar 

  8. Olsson, G.: AIChE Symposium Series, 72, No. 159, 52 (1976)

    Google Scholar 

  9. Beck, M. B. (ed.): Operational water quality management: beyond planning and design, Executive Report 7, International Institute of Applied System Analysis (IIASA), Laxemburg (Austria), p. 74 (1981)

    Google Scholar 

  10. Marsili-Libelli, S.: Modelling and control of biological wastewater treatment, Trans. IMC 6, No. 3, 115(1984)

    Google Scholar 

  11. Marsili-Libelli, S.: Second Florence Workshop on modelling and control of biological wastewater treatment, Env. Tech. Letters, 6, 515 (1985)

    Google Scholar 

  12. Roels, A. J.: Energetics and kinetics in biotechnology, p. 330, Amsterdam. Elsevier Biomedical Press 1983

    Google Scholar 

  13. Bazin, M. (ed.): Mathematics in microbiology, p. 307, London, Academic Press 1983

    Google Scholar 

  14. Marsili-Libelli, S.: Ecol. Mod. 9, 15 (1980)

    Google Scholar 

  15. Marsili-Libelli, S.: ibid. 24, 171 (1984)

    Google Scholar 

  16. Monod, J.: Ann. Rev. Microb. 3, 371 (1942)

    Google Scholar 

  17. Poduska, R. A. and Andrews, J. F.: J. Water Pollut. Control Fed. 47, 2599 (1975)

    Google Scholar 

  18. Olsson, G. and Andrews, J. F.: Water Research 12, 985 (1978)

    Google Scholar 

  19. Stenstrom, M. K. and Andrews, J. F.: J. Env. Eng. Div. ASCE 105, No. EE2, 245 (1979)

    Google Scholar 

  20. Vavilin, V. A.: Biotech. Bioeng. 24, 8 (1982)

    Google Scholar 

  21. Vavilin, V. A. and Vasiliev, V. B.: ibid. 25, 1521 (1983)

    Google Scholar 

  22. Vavilin, V. A. and Vasiliev, V. B.: ibid. 26, 1042 (1984)

    Google Scholar 

  23. Vandevenne, L. and Eckenfelder, W. W.: Water Res. 14, 561 (1980)

    Google Scholar 

  24. Esener, A. A., Veerman, T., Roels, J. A. and Kossen, N. W. F.: Biotech. Bioeng. 24, 1749 (1982)

    Google Scholar 

  25. Henze, M. (ed): Modelling of Biological Wastewater Treatment, p. 204, Water Sci. Tech. 18 (1986)

    Google Scholar 

  26. Maynard-Smith, J.: Models in ecology, p. 146, Cambridge, Cambridge University Press 1974

    Google Scholar 

  27. Stenstrom, M. K. and Poduska, R. A.: Water Res. 14, 643 (1980)

    Google Scholar 

  28. Gujer, W. and Erni, P.: Progr. Water Tech. 10, 391 (1978)

    Google Scholar 

  29. Dick, R. I.: J. San. Eng. Div. ASCE 96, No. SA2, 423 (1970)

    Google Scholar 

  30. Tracy, K. D. and Keinath, T. M.: AIChE Symposium Series (Water) 70, No. 136, 291 (1973)

    Google Scholar 

  31. Shin, B. S. and Dick, R. I.: J. Env. Eng. Div. ASCE 106, No. EE3, 505 (1980)

    Google Scholar 

  32. Lauria, D. T., Uunk, J. B. and Schaefer, J. K.: J. Env. Eng. Div. ASCE 103, No. EE4, 625 (1977)

    Google Scholar 

  33. Stehfest, H.: Trans. IMC 6, 160 (1984)

    Google Scholar 

  34. Olsson, G. and Chapman, D.: Modelling the Dynamics of Clarifier Behaviour in Activated Sludge Systems, in: Instrumentation and Control of Water and Wastewater Treatment and Transport Systems (ed. Drake, R. A. R.) p. 405, Oxford, Pergamon Press 1985

    Google Scholar 

  35. Heineken, F. G., Tsuchiya, H. M., and Aris, M.: Math. Biosci. 1, 115 (1967)

    Google Scholar 

  36. Naito, M., Takamatsu, T., Fan, L. T., and Le, E. S.: Biotech. Bioeng. 11, 731 (1969)

    Google Scholar 

  37. Nihtila, M. and Virkkunen, J.: ibid. 19, 1831 (1977)

    Google Scholar 

  38. Aborhey, S. and Williamson, D.: Automatica 14, 493 (1978)

    Google Scholar 

  39. Holmberg, A.: Int. J. System Sci. 12, 703 (1981)

    Google Scholar 

  40. Homberg, A.: Math. Biosci. 62, 23 (1982)

    Google Scholar 

  41. Solomon, B. O., Erickson, L. E., Hess, J. E., and Yang, S. S.: Biotech. Bioeng. 24, 633 (1982)

    Google Scholar 

  42. Holmberg, A. and Ranta, J.: Automatica 18, 181 (1982)

    Google Scholar 

  43. Di Stefano III, J. J. and Cobelli, C.: IEEE Trans. AC 25, 830 (1980)

    Google Scholar 

  44. Pohjampalo, H.: Math. Biosci. 41, 21 (1978)

    Google Scholar 

  45. Perkins, W. R.: Sensitivity Analysis, in: Feedback Systems (ed.) Cruz, J. B., p. 324, New York, McGraw-Hill (1972)

    Google Scholar 

  46. Vialas, C., Cheruy, A. and Gentil, S.: An Experimental Approach to Improve the Monod Model Identification, in: Modelling and Control of Biotechnological Processes (ed. Johnson, A.), p. 262, Oxford, Pergamon Press 1985

    Google Scholar 

  47. De Boor C. SIAM J. Numer. Anal. 14, 441 (1977)

    Google Scholar 

  48. Himmelblau, D.: Applied Nonlinear Programming, p. 498, New York, McGraw-Hill 1972

    Google Scholar 

  49. Kuester, J. L. and Mize, J. H.: Optimization Techniques with FORTRAN, p. 500, New York, McGraw-Hill 1974

    Google Scholar 

  50. Marsili-Libelli, S. and Castelli, M.: Appl. Math. and Comp. 23, n. 4, 341 (1987)

    Google Scholar 

  51. Bhatla, N. A. and Gaudy, A. F.: J. WPCF 38, 1441 (1966)

    Google Scholar 

  52. Marsili-Libelli, S.: Envir. Tech. Lett. 7, 341 (1986)

    Google Scholar 

  53. Jazwinski, A. H.: Stochastic Processes and Filtering Theory, p. 386, New York, Academic Press 1970

    Google Scholar 

  54. Gelb, D.: Applied Optimal Estimation, p. 374, Cambridge, Mass. M.I.T. Press 1974

    Google Scholar 

  55. Svrcek, N. Y., Elliot, R. F., and Zajic, J. E.: Biotech. Bioeng. 16, 827 (1974)

    Google Scholar 

  56. Cook, S. and Marsili-Libelli, S.: Wat. Sci. Tech. 13, 737 (1981)

    Google Scholar 

  57. Marsili-Libelli, S.: On-line Estimation of Bioactivities in Activated Sludge Processes, in: Modelling and Control of Biotechnical Processes (ed. Halme, A.), p. 316, Oxford, Pergamon Press 1983

    Google Scholar 

  58. Goto, M. and Andrews, J. F.: On-line Estimation of Oxygen Uptake Rate in the Activated Sludge Process, in: Instrumentation and Control of Water and Wastewater Treatment and Transport Systems (ed. Drake, R. A. R.), p. 867, Oxford, Pergamon Press 1985

    Google Scholar 

  59. Howell, J. A. and Sodipo, B. O.: On-line Respirometry and Estimation of Aeration Efficiencies in an Activated Sludge Aeration Basin from Dissolved Oxygen Measurements, in: Modelling and Control of Biotechnological Processes (ed. Johnson, A.) 191, Oxford, Pergamon Press 1985

    Google Scholar 

  60. Holmberg, U. and Olsson, G.: Simultaneous On-line Estimation of Oxygen Transfer Rate and Respiration Rate, ibid.in:, 185

    Google Scholar 

  61. Landau, I. D. and Lozano, R.: Automatica 17, 593 (1981)

    Google Scholar 

  62. Clarke, D. W. and Gawthrop, P. J.: Proc. IEE 126, 633 (1979)

    Google Scholar 

  63. Xianya, X. and Evans, R. J.: ibid. 131, Pt. D, 81 (1984)

    Google Scholar 

  64. Peterka, V.: Kibernetika 11, 53 (1975)

    Google Scholar 

  65. Bierman, G. J.: Factorization Methods for Discrete Sequential Estimation, p. 241, New York, Academic Press 1977

    Google Scholar 

  66. Lawrence, E. W. and McCarty, P. L.: J. San. Eng. Div., ASCE 96, n. SA3, 757 (1970)

    Google Scholar 

  67. Garrett, M. T.: Sew. and Ind. Wastes 30, n. 3, 253 (1958)

    Google Scholar 

  68. Bisogni, J. J. and Lawrence, A. W.: Water Res. 5, n. 9, 753 (1971)

    Google Scholar 

  69. D'Ans, G., Kokotovic, P. V., and Gottlieb, D.: IEEE Trans. AC 16, 341 (1971)

    Google Scholar 

  70. D'Ans, G., Gottlieb, D., and Kokotovic, P. V.: Automatica 8, 729 (1972)

    Google Scholar 

  71. Muzychenko, L. A., Macheva, L. A., Yakovleva, G. V.: Biotech. Bioeng. 4, 629 (1974)

    Google Scholar 

  72. Kwaakernaak, H. and Sivan, R.: Linear Optimal Control Systems, p. 575, New York, Wiley-Interscience 1972

    Google Scholar 

  73. Stephanopoulos, G.: Chemical Process Control: an introduction to theory and practice, p. 696, Prentice Hall Int., Englewood Cliffs, N.J. 1984

    Google Scholar 

  74. Astrom, K. J. and Wittenmark, B.: Computer Controller Systems: theory and practice, p. 430, Prentice-Hall Int., Englewood Cliffs, N.J. 1984

    Google Scholar 

  75. Marsili-Libelli, S.: Int. J. of Control 33, 601 (1981)

    Google Scholar 

  76. Hamalainen, R. P., Halme, A., and Gyllenberg, A.: A Control Model for Activated Sludge Treatment Process, 6th Triennial IFAC World Congress, ISA, Pittsburg 1975

    Google Scholar 

  77. Aarinen, R., Tirkkonen, J., and Halme, A.: Experiences on instrumentation and control of activated sludge plants — a microprocessor application, 7th Triennial IFAC World Congress, Pergamon Press, p. 255, 1978

    Google Scholar 

  78. Angelbeck, D. I., Shah Alam, A. B.: Simulation of optimal control strategies in a dynamic continuous flow activated sludge system, Proc. 30th Industrial Waste Conference Purdue University, Ann Arbor Science Publ. p. 159 (1977)

    Google Scholar 

  79. Marsili-Libelli, S.: Optimal aeration control for wastewater treatment, in: Computer Aided Design of Control Systems (ed. M. A. Cuenod), p. 511, Pergamon Press, Oxford 1980

    Google Scholar 

  80. Marsili-Libelli, S.: Trans. IMC 6, No. 3, 146 (1984)

    Google Scholar 

  81. Sörensen, P. E.: Pilot-scale evaluation of control schemes for the activated sludge process, Water Quality Institute, Danish Academy of Technical Sciences, Horsholm, Technical Report N. 1, p. 249 (1979)

    Google Scholar 

  82. Flanagan, M. J.: AIChE Symposium Series 75, No. 190, 232 (1979)

    Google Scholar 

  83. Sincic, D. and Bailey, J. E.: Water Res. 12, 47 (1978)

    Google Scholar 

  84. Yeung, S. Y. S., Sincic, D. and Bailey, J. E.: Water Res. 14, 77 (1980)

    Google Scholar 

  85. Stehfest, H.: Env. Tech. Letters 6, 556 (1985)

    Google Scholar 

  86. Marsili-Libelli, S.: Water Sci. Tech. 16, 613 (1984)

    Google Scholar 

  87. Yust, L. J., Stephenson, J. P., and Murphy, K. L.: Trans. IMC 6, n. 3, 165 (1984)

    Google Scholar 

  88. Tsugara, H., Sekine, T., Fujimoto, E., and Matsui, S.: Prediction and control of resident sludge in a final clarifier, in: Instrumentation and Control of Water and Wastewater Treatment and Transport Systems (ed. Drake, R. A. R.), p. 653, Oxford, Pergamon Press 1985

    Google Scholar 

  89. Schlegel, S.: Control of the sludge gravity thickening process, ibid.in:, p. 391, Oxford Pergamon Press 1985

    Google Scholar 

  90. Severin, B. F., Poduska, R. A., Fogler, S. P., and Abrahamsen, T. A.: Novel use of steady-state solids flux concepts for on-line clarifier control, ibid.in:, p. 397, Oxford, Pergamon Press 1985

    Google Scholar 

  91. Levenspiel, O.: Chemical Reaction Engineering, p. 578, New York, John Wiley and Sons 1972

    Google Scholar 

  92. Keinath, T. M., Ryckman, M. D., Dana, C. H., and Hofer, D. A.: J. Env. Eng. Div. ASCE 103, No. EE5, 829 (1977)

    Google Scholar 

  93. Craig, E. W., Meredith, D. D., Middleton, A. C.: J. Env. Eng. Div. ASCE 104, No. EE6, 1101 (1978)

    Google Scholar 

  94. Harris, C. J. and Billings, S. A.: Self-tuning and adaptive control: theory and application, p. 333, IEE Press, London 1981

    Google Scholar 

  95. Astrom, K. J.: Automatica 19, 471 (1983)

    Google Scholar 

  96. Yuh-ju Ko, K., McInnis, B. C., and Goodwin, G. C.: Automatica 18, 727 (1982)

    Google Scholar 

  97. Cheruy, A., Panzarella, L., and Denat, J. P.: Multimodel simulation and adaptive stochastic control of an activated sludge process, in: 1st IFAC Workshop on Modelling and Control of Biotechnical Processes (ed. Halme, A.), p. 127, Pergamon Press, Oxford 1983

    Google Scholar 

  98. Olsson, G., Rundqwist, L., Eriksson, L., and Hall, L.: Self-tuning control of the dissolved oxygen concentration in activated sludge systems, in: Instrumentation and Control of Water and Wastewater Treatment and Transport Systems (ed. Drake, R. A. R.), p. 473, Oxford, Pergamon Press 1985

    Google Scholar 

  99. Cameron, F. and Seborg, D. E.: Int. J. of Control 38, 401 (1983)

    Google Scholar 

  100. Marsili-Libelli, S., Giardi R., Lasagni, M.: Env. Tech. Letters 6, 576 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Marsili-Libelli, S. (1989). Modelling, identification and control of the activated sludge process. In: Lignocellulosic Materials. Advances in Biochemical Engineering/Biotechnology, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007860

Download citation

  • DOI: https://doi.org/10.1007/BFb0007860

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50163-3

  • Online ISBN: 978-3-540-45940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics