An Approach to a Markovian Realization of Two-Parameter Processes

  • H. Korezlioglu
  • Ph. Loubaton
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)


The Markovian realization problem for a two-parameter process is considered when the pasts are defined by an increasing sequence of left half-planes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.ATTASI. “Modélisation et traitement des suites a deux indices”. Thèse d’Etat, Université Paris V I, 1975.Google Scholar
  2. 2.
    CHIANG TSE PEI. “On the linear extrapolation of a continuous homogeneous random field”. Theory of probability and its applications, 2, n° 1, 1957, p. 58–89.Google Scholar
  3. 3.
    H.HELSON, D.LOWDENSLAGER. “Prediction theory and Fourier series in several variables”. Acta.Math., 99, 1959, p. 165–202.CrossRefGoogle Scholar
  4. 4.
    H. KOREZLIOGLU, p.LOUBATON. KOREZLIOGLU, p.LOUBATON. “Prédiction des processus stationnaires au sens large sur relativement aux demi-plans”. C.R. Acad.Sci. Paris, 301, Serie I, p. 27–30, 1985.Google Scholar
  5. 5.
    H. KOREZLIOGLU, Ph.LOUBATON. “Factorisation et décomposition spectrales pour les processus stationnaires au sens large surz2”. C.R. Acad.Sci. Paris, 300, Série I, p. 81–84, 1985.Google Scholar
  6. 6.
    H. KOREZLIOGLU, Ph.LOUBATQN. “Spectral factorization of wide sense stationary processes on;:”. To appear in Journal of Multivariate Analysis.Google Scholar
  7. 7.
    A.LINDQUIST, M.PAVON. “On the structure of state space models for discrete time stochastic vector processes”. IEEE on A.C., Vol. AC-29, n° 5, pp 418–431, May 1984.Google Scholar
  8. 8.
    A.LINDQUIST, M.PAVON, G.PICCI. “Recent trends in stochastic realization theory”. In Harmonic Analysis and Prediction Theory. The Masani Volume, V.Mandrekar and H.Salehi, Eds. Amsterdam, The Netherlands: North-Holland, 1983.Google Scholar
  9. 9.
    A.LINDQUIST, G.PICCI. “Realization theory for multivariate stationary Gaussian Processes II: State space revisited and dynamical representations of finite dimensional state spaces”. Proc. 2nd. Intern. Conf. on Information Sciences and Systems, Reidel Publ. Co., 108–129, 1979.Google Scholar
  10. 10.
    A. LINDQUIST, G.PICCI. “State space models for Gaussian Stochastic Processes”. Stochastic Systems: The Mathematics of Filtering and Identification and Applications. Eds. M.Hazewinkel and J.C.Willems. Reidel Publ. Co., 169–204, 1981Google Scholar
  11. 11.
    G.RUCKEBUSH. “Théorie géométrique de la représentation markovienne”. Ann. Inst. Henri Poincaré,XVI, 225–297, 1980.Google Scholar
  12. 12.
    G. RUCKEBUSH. “On the structure of minimal Markovian representation”. Non Linear Stochastic Problems. Eds. R.Bucy and J.M.F.Moura, Reidel Publ. Co., p. 37–1,37–12, 1982.Google Scholar
  13. 13.
    G. RUCKEBUSH. “Markovian representations and spectral factorization of stationary Gaussian processes”. In Harmonic Analysis and Prediction Theory. The Masani Volume, V.Mandrekar and H.Salehi, Eds. Amsterdam, The Netherlands: North-Holland, 1983.Google Scholar
  14. 14.
    SZ.NAGY, C.FOIA5. “Harmonic Analysis of operators on Hilbert space”. Amsterdam, The Netherlands: North-Holland, 1970.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • H. Korezlioglu
    • 1
  • Ph. Loubaton
    • 1
  1. 1.Département Systèmes et CommunicationsEcole Nationale Supérieure des TélécommunicationsParis Cedex 13France

Personalised recommendations