A Summary of Recent Results on the Scalar Rational Interpolation Problem

  • A. C. Antoulas
  • B. D. O. Anderson
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)


A summary of the results obtained in ANTOULAS [1986a] is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. D. O. ANDERSON and A. LINNEMANN [ 1985 ] Control of decentralized systems with distributed controller complexity, Proc. 24 IEEE CDC, pp. 1468–1472.Google Scholar
  2. A. C. ANTOULAS [ 1986a ] On the scalar rational interpolation problem, to appear, IMA J. Mathematical Control and Information, Special Issue on Parametrization problems.Google Scholar
  3. A. C. ANTOULAS [1986b1 On Recursiveness and Related Topics in Linear Systems, to appear, IEEE Transactions on Automatic Control.Google Scholar
  4. V. BELEVITCH [ 1970 ] Interpolation Matrices, Philips Res. Reports, 25: 337–369.Google Scholar
  5. O. H. BOSGRA [ 1983 ] On parametrizations for the minimal partial realization problem, Systems and Control Letters, 3: 181–187.CrossRefzbMATHMathSciNetGoogle Scholar
  6. B.-C. CHANG and J. B. PEARSON [ 1984 ] Optimal disturbance reduction in linear multivariable systems, IEEE Trans. Automatic Control, AC-29: 880–887.Google Scholar
  7. M. FIEDLER [ 1984 ] Hankel and Löwner matrices, Linear Algebra & Applications, 58: 75–95.Google Scholar
  8. R. E. KALMAN [ 1979 ] On partial realizations, transfer functions, and canonical forms, Acta Polyt. Scand. Ma., 31: 9–32.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • A. C. Antoulas
    • 1
  • B. D. O. Anderson
    • 2
  1. 1.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  2. 2.Department of Systems EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations