Advertisement

Decouplage des Systemes Structures Interconnectes. Approche Transfert

  • A. Belmehdi
  • C. Commault
  • J. M. Dion
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)

Resume

Dans cet article, on s’interesse à l’étude du découplage des systèms structurés interconnectés. on donnera des conditions nécessaires et suffisantes pour que de tels systèmes soient découplables génériquement par retour d’état. L’étude est présentée dans le cadre de l’approche transfert ce qui nous permettra d’obtenir, via la théorie des graphes, une C.N.S. de découplage en ne faisant que de très faibles hypothèses sur le système découpler.

Mots Cles

Systèmes structures découplage théorie des graphes structure à l’infini. 

Abstract

In this paper, we consider the decoupling of structured interconnected systems. we give necessary and sufficient conditions for state feedback generic decouplability. This result is obtained within the transfer matrix approach and an associated graph characterization. The decoupling conditions are obtained under fairly weak assumptions on the system to be decoupled.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [l]
    M.E. WARREN and S.K. MILIER “Generic solvability of Morgan’s Problem”, I.E.E.E. Trans. on Auto. Control, Vb1. AC-20, No 2, pp 268–269, April 1975.CrossRefGoogle Scholar
  2. [2]
    A. LINNEMANN “Decoupling of structured systems”, Systems & Control letters Vol. 1, pp 71–86, August 1981.CrossRefMathSciNetGoogle Scholar
  3. [3]
    A. KASINSKI and J. LEVINE “A fast graph theoretic algorithm for the feedback decoupling problem of nonlinear systems”, Lecture Notes in Control No 58, Springer, pp 550–562, 1983.Google Scholar
  4. [4]
    B. D’ANDREA and J. LEVINE “C.A.O. pour les problèmes D, RP et LD des Systèmes non-linéaires”, in Algebraic and Geometric Methods in Nonlinear Control Theory, M. FLIESS, M. HAZEWINKEL éditeurs, Reidel, 1986.Google Scholar
  5. [5]
    P.L. FALB and W.A. WOLOWICH “Decoupling in the design and synthesis of multivariable control”, I.E.E.E. Trans. on Auto. Control, Vol. AC-12, pp 651–659, 1967.Google Scholar
  6. [6]
    M.L.J. HAUTUS and M. HEYMANN “Linear feedback decoupling-Transfer function analysis”, I.E.E.E. Trans. on Auto.Control, Vol. AC-28, No 8, pp 823–832, 1983.CrossRefMathSciNetGoogle Scholar
  7. [7]
    R.W. SHIELDS and J.B. PEARSON “Strutural controllability of multi-input linear systems”, I.E.E.E. Trans. on Auto.Control, Vol. AC-21, pp 203–212, 1976.Google Scholar
  8. [8]
    C.L. LIU “introduction to coMbinatorial Mathematics”, New York Mc GRAW HILL (1968).zbMATHGoogle Scholar
  9. [9]
    C. BERGE “Graphes et Hypergraphes”, DUNOD PARIS, (1970).Google Scholar
  10. [10]
    W.N. ANDERSON, Jr. “Maximum matching and the rank of a matrix”, SIAM J. Appl. Math, Vol. 28, No 1, January 1975.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • A. Belmehdi
    • 1
  • C. Commault
    • 1
  • J. M. Dion
    • 1
  1. 1.Laboratoire D’automatique De Grenoble (U.A. C.N.R.S.)E.N.S.I.E.G. I.N.P.G.Saint Martin D’heresFrance

Personalised recommendations