Advertisement

Approximation Entree-Sortie D’un Systeme Non Lineaire Continu par un Systeme Discret

  • S. Monaco
  • D. Normand-Cyrot
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)

Abstract

It is shown that the input-output map associated to the system
(1)
initialized at an equilibrium point can be approximated by a family of discrete-time state-affine systems of state space of finite dimension. To do this, a sampled system which reproduces the state and output evolutions of system (1) for inputs which are constant on time intervals of fixed amplitude is.computed. The corresponding sampled Volterra series can be approximated by a finite number of kernels, each of these being realized, according to a previous result proposed by the authors for discrete-time systems, by a discrete-time state-affine system. Finally, an example is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    S. MONACO et D. NORMAND-CYROT, A note on the discretization of a linear analytic control system, Rapport 06/84 D.I.S., Université de Rome “La Sapienza”, 1984, 24th IEEE-CDC, Fort Lauderdale, 1457–1462, 1985.Google Scholar
  2. [2]
    S. MONACO et D. NORMAND-CYROT, Input-output approximation of a nonlinear discrete-time system from an equilibrium point, 23rd IEEE-CDC, Las Vegas, p. 90–95, 1984.Google Scholar
  3. [3]
    R.W. BROCKETT, Volterra series and geometric control theory, Automatica, Vol. 12, 167–176, 1976.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    P. D’ALESSANDRO, A. ISIDORI et A. RUBERTI, Realization and structure theory of bilinear dynamical systems, SIAM J. Cont., 12, 517–535, 1974.Google Scholar
  5. [5]
    R. REE, Lie elements and an algebra associated with shuffles, Ann. of Math., 68, 210–220, 1958.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    M. FLIESS, M.LAMNABHI et F. LAMNABHI-LAGARRIGUE, An algebraic approach to nonlinear functional expansions, IEEE Trans. on Cir. and Syst., 30, 554–570, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    R. GOODMAN, Lifting vector fields to nilpotent Lie groups, J. Math. Pures and Appl., 57, 77–86, 1978.zbMATHMathSciNetGoogle Scholar
  8. [8]
    S. MONACO et D. NORMAND-CYROT, Invariant distributions under sampling, Proc. MTNS-85, Stockholm, 1985.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • S. Monaco
    • 1
  • D. Normand-Cyrot
    • 2
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di RomaRomeItalie
  2. 2.Laboratoire des Signaux et SystèmesGif-sur-YvetteFrance

Personalised recommendations