Some Inequalities for Non Minimum Phase Systems

  • L. Pandolfi
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)


In this paper, we study some inequalities for the sensitivity function and the conjugate sensitivity function of non minimum phase systems. These inequalities are consequences of Jensen formula and Jensen inequality, and illustrate the effects of the unstable zeros of the system.


IEEE Transaction Automatic Control Half Plane Sensitivity Function Minimum Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyd, S., Desoer, C.A., Performance bounds on linear time invariant MIMO feedback systems, Stoccolma, MTNS ‘85Google Scholar
  2. 2.
    Desoer, C.A., Liu, R.W., Murray, J., Saeks, R. system design: the fractional representation approach, IEEE transactions on Automatic Control, AC-25, 399–412, 1980Google Scholar
  3. 3.
    Duren, P.L., Theory of H2 spaces, Academic Press, Feedback New York, 1970zbMATHGoogle Scholar
  4. 4.
    Francis, B.A., Zames, G., On optimal sensitivity theory for SISO feedback systems, IEEE transactions on Automatic Control, AC-29, 9–16, 1984Google Scholar
  5. 5.
    Freudenberg, J.S., Looze, D.P., Right half plane poles and zeros and design tradeoffs in feedback systems, IEEE transactions on Automatic Control, AC-30, 555,-565, 1985Google Scholar
  6. 6.
    Horowitz, I., Synthesis of feedback systems, Academic Press, New York, N.Y., 1963zbMATHGoogle Scholar
  7. 7.
    Koosis, P., The theory of HP spaces, Cambridge University Press, Cambridge 1980Google Scholar
  8. 8.
    Pandolfi, L., The transmission zeros of systems with delays, International Journal of Control, 36, 959–976, 1982CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Pandolfi, L., Olbrot, A.W., On the minimization of sensitivity to additive disturbances for linear distributed parameter systems, to appear, International Journal of ControlGoogle Scholar
  10. 10.
    Rudin, W., Real and Complex Analysis, Mc Graw Hill, New York, 1966zbMATHGoogle Scholar
  11. 11.
    Vidyasagar, M., Schneider, F., Francis, B.A., Algebric and Topological Aspects of Feedback Stabilization, IEEE transactions on Automatic Control, AC-27, 880–894, 1982Google Scholar
  12. 12.
    Zames, G., Feedback and optimal sensitivity: model reference trasformation, multiplicative seminorms and approximate inverses, IEEE transactions on Automatic Control, AC-26, 301–320, 1981Google Scholar
  13. 13.
    Zames G., Bensoussan, D., Multivariable feedback, sensitivity and decentralized control, IEEE transactions on Automatic Control, AC-28, 1030–1035, 1983CrossRefMathSciNetGoogle Scholar
  14. 14.
    Zames, G., Francis, B.A., Feedback, minimax sensitivity and optimal robustness, IEEE transactions on Automatic Control, AC-28, 585–601, 1983Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • L. Pandolfi
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di TorinoTorinoItalia

Personalised recommendations