Advertisement

Input-Output Decoupling of Hamiltonian Systems: The Nonlinear Case

  • H. Nijmeijer
  • A. J. van der Schaft
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)

Abstract

In this paper we give necessary and sufficient conditions for a nonlinear Hamiltonian system to be locally input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. These results extend the theory developed in an earlier paper for linear Hamiltonian systems.

Keywords

Function Space Hamiltonian System Poisson Bracket Symplectic Manifold Function Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Isidori, Nonlinear Control Systems: An Introduction, Lect. Notes in Control and Information Sciences vol. 72, Springer, Berlin, 1985.Google Scholar
  2. [2]
    A. Isidori, A.J. Krener, C. Gori-Giorgi, S. Monaco, Nontinea & decoupting lieedback: A diWitential geometitic apptoadt, IEEE Trans. Aut. Control, AC-26, 331–345, 1981.Google Scholar
  3. [3]
    H. Nijmeijer & A.J. van der Schaft, Controated invakiance by static output ieedbach got nontineat systems, Systems & Control Letters, 2, 39–47, 1982.Google Scholar
  4. [4]
    H. Nijmeijer & A.J. van der Schaft, Input-output decoupting og Hamittonian systems: The tineat ease, systems & control Letters, 6, 53–58, 1985.Google Scholar
  5. [5]
    A.J. van der Schaft, System theoretic descriptions of physical systems, CWI Tracts No. 3, CWI, Amsterdam, 1984.Google Scholar
  6. [6]
    A.J. van der scbaft, Distunbance decoupting by obse Avation ieedbach Hamittonian systems, Systems & Control Letters, 2, 286–291, 1983.Google Scholar
  7. [7]
    A.J. van der Schaft, Controated invatiance ion Hamittonian systems, Mathematical Systems Theory, 18, 257–291, 1985.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    A. Weinstein, The local strusetute Poisson manitiotds, J. Diff. Geometry, 18, 523–557, 1983.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • H. Nijmeijer
    • 1
  • A. J. van der Schaft
    • 1
  1. 1.Dept. of Applied MathematicsTwente University of TechnologyAE EnschedeThe Netherlands

Personalised recommendations