Vers Une Nouvelle Theorie Du Bouclage Dynamique sur La Sortie des Systemes Non Lineaires

  • Michel Fliess
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)


Necessary and sufficient conditions for non-linear decoupling and pertur-bation rejection by dynamic output feedbacks are given thanks to differential alge-braic methods. Analogue results for discrete-time systems are derived by employing difference algebra. Even for linear systems most results appear to be new.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Antoulas (A.C.) – A new approach to synthesis problems in linear system theory, IEEE Trans. Automat. Contr., 30, 1985, p. 465–473.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Claude (D.), Glumineau (A.) et Moog (C.H.) – Nonlinear decoupling and immersion techniques applied to a single point mooring of a tanker, Proc. 24th IEEE Control Decision Conf., Fort Lauderdale, FL, Dec. 1985, p. 1660–1665.Google Scholar
  3. [3]
    Cohn (R.M.) – Difference Algebra, Interscience, New York, 1965.Google Scholar
  4. [4]
    Fliess (M.) – Some remarks on nonlinear invertibility and dynamic state-feed-back, MTNS-85, Stockholm, June 1985, C. Byrnes and A. Lindquist Eds, Elsevier, Amsterdam, 1986.Google Scholar
  5. [5]
    Fliess (M.) – A new approach to the noninteracting control problem in nonlinear systems theory, Proc. 23rd Allerton Conf., Monticello, IL, Oct. 1985, p. 123–129.Google Scholar
  6. [6]
    Fliess (M.) – L’inversion entrée-sortie comme illustration d’une algèbre nou-velle en non-linéaire, Actes Coll. CNRS “Propriétés Structurales des Systèmes Linéaires, Application A des Problèmes de Commande”, Paris, Juin 1986.Google Scholar
  7. [7]
    Fliess (M.) – A note on the invertibility of nonlinear input-output differential systems, A paraître.Google Scholar
  8. [8]
    Grizzle (J.W.) – Controlled invariance for discrete-time nonlinear systems with an application to the disturbance decoupling problem, IEEE Trans. Automat. Contr., 30, 1985, p. 868–874.MathSciNetGoogle Scholar
  9. [9]
    Hammer (J.) et Khargonekar (P.K.)–Decoupling of linear systems by dynamic output feedback, Math. Systems Theory, 17, 1984, p. 135–157.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Isidori (A.) – Nonlinear Control Systems: An Introduction, Lect. Notes Control Informat. Sc. 72, Springer, Berlin, 1985.Google Scholar
  11. [11]
    Isidori (A.), Krener (A.J.), Gori-Giorgi (C.) et Monaco (S.) – Nonlinear decou-pling via feedback: a geometric approach, IEEE Trans. Automat. Contr., 26, 1981, p. 331–345.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Johnson (J.) – Orders for systems of differential equations and a generaliza-tion of the notion of differential ring, J. Algebra, 78, 1982, p. 91–119.zbMATHGoogle Scholar
  13. [13]
    Kaplansky (I.) – An Introduction to Differential Algebra, 2nd ed., Hermann, Paris, 1976.Google Scholar
  14. [14]
    Kolchin (E.R.) – Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.Google Scholar
  15. [15]
    Monaco (S.) et Normand-Cyrot (D.) – Invariant distributions for discrete-time nonlinear systems, Systems Control Lett., 5, 1984, p. 191–196.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Pernebo (L.) – An algebraic theory for the-design of controllers for linear multivariable systems – Part I: Structure matrices and feedback design, IEEE Trans. Automat. Contr., 26, 1981, p. 171–182 – Part II: Feedback realizations and feedback design, p. 183–194.Google Scholar
  17. [17]
    Pommaret (J.-F.) – Differential Galois Theory, Gordon and Breach, New York, 1983.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • Michel Fliess
    • 1
  1. 1.Laboratoire des Signaux et SystèmesC.N.R.S.-E.S.E.Gif-sur-YvetteFrance

Personalised recommendations