Advertisement

Lyapunov Design of an Adaptive External Linearization Feedback Control for Manipulators

  • G. Campion
  • G. Bastin
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)

Abstract

This paper presents an adaptive extension of the external linearization feedback control applied to manipulators. The design of the adaptation law is based on a Lyapunov stability analysis. This algorithm ensures stability of the error model, even in case of poor knowledge of the model parameters, as well as good robustness properties in presence of unmodelled bounded disturbances.

Keywords

Inertia Matrix Inertia Moment Model Reference Adaptive Control Parameter Estimation Error Adaptive Control Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. TOURASSIS V.D. and NEUMAN C.P. (1985), “Robust Non Linear Feedback Control for Robotic Manipulator”, IEE Proceedings of Control Theory and Applications, vol. 132, part D, n’ 4, July 1985.Google Scholar
  2. BALESTRINO A., DE MARIA G., SCIAVICCO L. (1982), “Hyperstable Adaptive Model Following Control of Non Linear Systems”, Systems and Control Letters, vol. 1, n’4, pp. 232–236.Google Scholar
  3. BALESTRINO A., G. DE MARIA and L. SCIAVICCO (1983), “An Adaptive Model following Control System for Robotic Manipulators”, Trans. ASME, J. Dynamic Syst. Measure. Control, 105, 143–151.Google Scholar
  4. BALESTRINO A., DE MARIA G., ZINOBER A.S.I. (1984), “Nonlinear Adaptive Model Following Control”, Automatica, vol$120, n’5, pp. 559–568Google Scholar
  5. NICOSIA S., TOMEI P., (1984) “Model Reference Adaptive Control Algorithms for Industrial Robots”, Automatica, vol. 20, n’ 5, pp. 635–644, 1984.Google Scholar
  6. YOUNG K.K.D. (1978), “Controller design for a manipulator using theory of variable structure systems”, IEEE Trans. System Man Cybern., SMC-8, pp. 108–119.Google Scholar
  7. HOROWITZ R., TOMIZUKA M. (1980), “An Adaptive Control Scheme for Mechanical Manipulators. Compensation of nonlinearity and decoupling control”, ASME paper 80-WA IDSC 6.Google Scholar
  8. TOMIZUKA M., HOROWITZ R., LANDAU I.D. (1982), “On the Use of Model Reference Adaptive Control Techniques for Mechanical Manipulators”, Second IASTED Symposium on Modelling, Identification, Control and Robotics, Davos, March 1982.Google Scholar
  9. TOMIZUKA M., HOROWITZ R., (1984), “Model Reference Adaptive Control of Mechanical Manipulators”, Proc. IFAC Workshop Adaptive Systems in Control and Signal Processing, San Fransisco (1983), Pergamon Press.Google Scholar
  10. ROUCHE N. and K. PEIFFER (1969), “Lyapunov’s Second Method applied to Partial Stability”, Journal de Mécanique, vol. 8, n’ 2.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • G. Campion
    • 1
  • G. Bastin
    • 2
  1. 1.Chargé de RecherchesFNRSBelgium
  2. 2.GRECO — Systèmes Adaptatifs (CNRS, France) Laboratoire d’Automatique, Dynamique et Analyse des SystèmesUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations