Advertisement

Méthode des Perturbations Pour L’Optimisation des Systèmes Statiques et Dynamiques

  • R. Gabasov
  • A. I. Kalinine
  • F. M. Kirillova
  • A. V. Pokatayev
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)

Abstract

Quasilinear problems of optimal control and nonlinear programming are investigated. The algorithms for approximate solution of the optimization problems are worked out on the base of the support [Gabasov R., Kirillova F.M. Constructive Methods of Optimization. P. II. Control Problems. Minsk, University Press, 1984] and asymptotic methods. The algorithms are applied to the solution of general nonlinear programming problems and nonlinear optimal control problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Gabasov R., Kirillova F.M., Kostukova 0.I.–Théorie constructive des problèmes extrémaux.–Minsk: Universitetskoyé, 1984, p. 62–67.Google Scholar
  2. 2.
    Gabasov R., Kirillova F.M. Méthodes constructives d’optimisation. P. 2. Problèmes de la commande. - Minsk: Universitetskoyé, 1984. - 207 p.Google Scholar
  3. 3.
    Pontriaguine L.S., Boltiansky V.G., Gamkrelidz6 R.V., Michénko E.F. Théorie mathématique des processus optimaux. - Moscou: Naaka, 1983. - 399 P6Google Scholar
  4. 4.
    Molseev N.N. Méthodes asymptotiques de mécanique non linéaire. - Moscou, 1981. - 400 p.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • R. Gabasov
    • 1
  • A. I. Kalinine
    • 1
  • F. M. Kirillova
    • 2
  • A. V. Pokatayev
    • 2
  1. 1.Faculté de Mathématiques AppliquéesUniversité d’Etat de BiélorussieMinskURSS
  2. 2.Institut de MathématiquesAcadémie des Sciences de BiélorussieMinskURSS

Personalised recommendations