Advertisement

Controlabilite Exacte des Systemes Distribues: Remarques sur la Theorie Generale et les Applications

  • J. L. Lions
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 83)

résumé

Considérons — formellement tout d’abord — un système dont l’état y = y(t;v) = y(v) est donné par la solution de
(1.1)
A = opérateur non borné, symmétrique, dans un espace de Hilbert convenable (1);

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. R. Glowinski, A parattre.Google Scholar
  2. R. Glowinski et J.L. Lions, A paraitre.Google Scholar
  3. Lop Fat Ho, “Observabilité frontière de l’équation des ondes.” C.R.A.S., 1986.Google Scholar
  4. I. Lasiecka, J.L. Lions, R. Triggiani, “Non homogeneous boundary value problems for second order hyperbolic operators.” J.M.P.A., 1986.Google Scholar
  5. I. Lasiecka et R. Triggiani, A paraitre.Google Scholar
  6. J.L. Lions, “Contrôle des systèmes distribués singuliers.” Gauthier Villars, 1983.Google Scholar
  7. J.L. Lions, “Controlabilité exacte des systèmes distribués.” C.R.A.S., 1986.Google Scholar
  8. J.L. Lions, “Exact controllability for hyperbolic and Petrowsky’s system.” Ouspechi Math. Nauk., 1986.Google Scholar
  9. J.L. Lions, J. Von Neumann Lecture. SIAM meeting, Boston, July 1986.Google Scholar
  10. J.L. Lions, Lecture dedicated to P. Lax. Berkeley, June 1986.Google Scholar
  11. W. Littman. Littman, “Boundary control theory for beams and plates. 24th CDC. Fort Landerdale, 1985.Google Scholar
  12. D. Russell, “A unified boundary controllability theory for hyperbolic and parabolic equations.” Studies in Applied Math. 52 (1973), p. 189–211.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • J. L. Lions
    • 1
  1. 1.Collège de FranceFrance

Personalised recommendations