Skip to main content

Synthesis of l-carnitine by microorganisms and isolated enzymes

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 50))

Abstract

l-Carnitine, a quaternary ammonium compound, plays an important role in Β-oxidation of fatty acids in mammals. The increasing demand for this compound in medicine has led to the development of numerous procedures for l-carnitine production. This review discusses the possibilities of microbial and enzymatical synthesis of l-carnitine and gives an overview on the pathways of l-carnitine metabolism and related enzymes in microorganisms.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bremer J (1983) Physiol Rev 63: 1420

    Google Scholar 

  2. Gulewitsch W, Krimberg R (1905) Hoppe-Seyler's Z Physiol Chem 45: 326

    Google Scholar 

  3. Kutscher FZ (1905) Untersuch Nahr Genussm 10: 528

    Google Scholar 

  4. Tomita M, Sendju Y (1927) Hoppe-Seyler's Z Physiol Chem 169: 263

    Google Scholar 

  5. Friedman S, Fraenkel GS (1972) Carnitine. In: Sebrell WH, Harris RS (eds) The vitamins, 2nd edn. Academic Press, New York, vol 5, p 329

    Google Scholar 

  6. Fritz IB (1963) Adv Lipid Res 1: 285

    Google Scholar 

  7. Bieber LL (1988) Ann Rev Biochem 57: 261

    Google Scholar 

  8. Borum PR (1983) Ann Rev Nutr 3: 233

    Google Scholar 

  9. Scholte HR, de Jonge PC (1987) Metabolism, function and transport of carnitine in health and disease. In: Gitzelmann R, Baerlocher K, Steinman B (eds) Carnitin in der Medizin. Schattauer, Stuttgart, p 21

    Google Scholar 

  10. Tanphaichitr V, Broquist HP (1973) J Biol Chem 248: 2176

    Google Scholar 

  11. Wolf G, Berger CRA (1961) Arch Biochem Biophys 92: 360

    Google Scholar 

  12. Rebouche CJ, Broquist HP (1976) J Bacteriol 126: 1207

    Google Scholar 

  13. Borum PR, Broquist HP (1977) J Biol Chem 252: 5651

    Google Scholar 

  14. Paik WK, Kim S (1975) Adv Enzymol Relat Areas Mol Biol 42: 227

    Google Scholar 

  15. Henderson LM, Nelson PJ, Henderson L (1982) Fed Proc 41: 2843

    Google Scholar 

  16. Rebouche CJ, Engel AG (1980) Biochim Biophys Acta 630: 22

    Google Scholar 

  17. Bremer J (1962) Biochim Biophys Acta 57: 327

    Google Scholar 

  18. Lindstedt G, Lindstedt S (1970) J Biol Chem 245: 4178

    Google Scholar 

  19. Rebouche CJ, Engel AG (1980) J Biol Chem 255: 8700

    Google Scholar 

  20. Engel AG, Angelini C (1973) Science 179: 899

    Google Scholar 

  21. Carroll EC, Carter AL, Perlman S (1987) J Nutr 117: 1501

    Google Scholar 

  22. Gilbert EF (1985) Pathology 17: 161

    Google Scholar 

  23. Rebouche CJ, Paulson DJ (1986) Ann Rev Nutr 6: 41

    Google Scholar 

  24. Hulsmann WC (1991) Cardiovascular Drugs and Therapy 5: 7

    Google Scholar 

  25. Meier PJ (1987) d-Carnitin, harmlos? In: Gitzelmann R, Baerlocher K, Steinman B (eds) Carnitin in der Medizin. Schattauer, Stuttgart p 101

    Google Scholar 

  26. Emaus KR, Bieber LL (1983) J Biol Chem 258: 13160

    Google Scholar 

  27. Kleber HP, Claus R (1982) DD 204 378

    Google Scholar 

  28. Kleber HP, Claus R (1981) DD 211 039

    Google Scholar 

  29. Kleber HP, Claus R, Seim H, Strack E (1981) DD 204 105

    Google Scholar 

  30. Typelt H, Claus R, Nitzsche K (1991) J Biotechnol 18: 173

    Google Scholar 

  31. Strack E, Lorenz I (1960) Hoppe-Seyler's Z Physiol Chem 318: 129

    Google Scholar 

  32. Strack E, Müller DM (1972) Hoppe-Seyler's Z Physiol Chem 353: 618

    Google Scholar 

  33. Cavazza C (1980) Germ Offen DE 2927672

    Google Scholar 

  34. Comber RN, Brouillette WJ (1987) J Biol Chem 52: 2311

    Google Scholar 

  35. Voeffray R, Perlberger JC, Tenud L, Gosteli J (1987) Helv Chim Acta 70: 2058

    Google Scholar 

  36. Bock K, Lundt I, Pederson C (1983) Acta Chem Scand, Ser B 37: 341

    Google Scholar 

  37. Fiorini M, Valentini C (1982) Eur Patent Appl EP 60595

    Google Scholar 

  38. Zhou B, Gopalan AS, Van Middlesworth F, Shieh WR, Sih CJ (1983) J Am Chem Soc 105: 5925

    Google Scholar 

  39. Seebach D, Giovannini F, Lamatsch B (1985) Helv Chim Acta 68: 958

    Google Scholar 

  40. Renaud P, Seebach D (1986) Synthesis 5: 424

    Google Scholar 

  41. Bellamy FD, Bondoux M, Dodey P (1990) Tetrahedron Lett 31: 7323

    Google Scholar 

  42. Kleber HP, Seim H, Aurich H, Strack H (1977) Arch Microbiol 112: 201

    Google Scholar 

  43. Miura-Fraboni J, Englard S (1983) FEMS Microbiol Lett 18: 113

    Google Scholar 

  44. Miura-Fraboni J, Kleber HP, Englard S (1982) Arch Microbiol 133: 217

    Google Scholar 

  45. Seim H, Löster H, Claus R, Kleber HP, Strack E (1982) FEMS Microbiol Lett 15: 165

    Google Scholar 

  46. Kleber HP (1991) Metabolism of trimethylammonium compounds by Acinetobacter. In: Towner KJ, Bergogne-Berezin E, Fewson CA (eds) The Biology of Acinetobacter. Plenum, New York, p 403

    Google Scholar 

  47. Sih CJ (1985) WO Patent Appl 85/04900

    Google Scholar 

  48. Sih CJ (1988) US Patent Appl US 4751 182

    Google Scholar 

  49. Aragozzini F, Manzoni M, Cavazzoni V, Craveri R (1986) Biotechnol Lett 8: 95

    Google Scholar 

  50. Kawamura M, Akutsu S, Fukuda H, Hata H, Morishita T, Kano K, Nishimori H (1987) Jpn Kokai Tokkyo Koho JP 62, 118, 899

    Google Scholar 

  51. Dropsy EP, Klibanov AM (1984) Biotechnol Bioeng 26: 911

    Google Scholar 

  52. Francalanci F, Ricci M, Cesti P, Venturello C (1987) Eur Patent Appl EP 237 983

    Google Scholar 

  53. Bianchi D, Cabri W, Cesti P, Francalanci F, Ricci M (1988) J Org Chem 53: 104

    Google Scholar 

  54. Patel SS, Conlon HD, Walt DR (1986) J Org Chem 51: 2842

    Google Scholar 

  55. Bremer J (1962) J Biol Chem 237: 228

    Google Scholar 

  56. Fritz IB, Schultz SK, Srere PA (1963) J Biol Chem 238: 2509

    Google Scholar 

  57. Chase JFA, Pearson DJ, Tubbs PK (1965) Biochim Biophys Acta 96: 162

    Google Scholar 

  58. Marquis NR, Fritz IB (1965) J Biol Chem 240: 2197

    Google Scholar 

  59. Colucci WJ, Gandour RD (1988) Bioorg Chem 16: 307

    Google Scholar 

  60. Kawamoto S, Ueda M, Nozaki C, Yamamura M, Tanaka A, Fukui S (1978) FEBS Lett 96: 37

    Google Scholar 

  61. Ratledge C, Gilbert SC (1985) FEMS Microbiol Lett 27: 273

    Google Scholar 

  62. Ueda M, Tanaka A, Fukui S (1982) Eur J Biochem 124: 205

    Google Scholar 

  63. Claus R, KÄppeli O, Fiechter A (1982) Anal Biochem 127: 376

    Google Scholar 

  64. Kispal G, Cseko J, Alkonyi I, Sandor A (1991) Biochim Biophys Acta 1085: 217

    Google Scholar 

  65. Ueda M, Tanaka A, Fukui S (1984) Eur J Biochem 138: 445

    Google Scholar 

  66. Miyazawa S, Ozasa H, Furuta S, Osumi T, Hashimoto T (1983) J Biochem 93: 439

    Google Scholar 

  67. Kozulic B, KÄppeli O, Meussdoerffer F, Fiechter A (1987) Eur J Biochem 168: 245

    Google Scholar 

  68. Mittal B, Kurup CKR (1980) Biochim Biophys Acta 619: 90

    Google Scholar 

  69. Markwell MAK, Tolbert NE, Bieber LL (1976) Arch Biochem Biophys 176: 479

    Google Scholar 

  70. Chase JFA (1967) Biochem J 104: 1503

    Google Scholar 

  71. McCreary MD, Lewis DW, Wernick DL, Whitesides G (1974) J Am Chem Soc 96: 1038

    Google Scholar 

  72. Ouyang T, Walt DR (1991) J Org Chem 56: 3752

    Google Scholar 

  73. Nakayama K, Haruo H, Ogawa Y, Ozawa T, Ota T (1989) Jpn Kokai Tokkyo JP 01222 796

    Google Scholar 

  74. Nakayama K, Honda H, Ogawa Y, Ozawa T, Tetsuo O (1989) Jpn Kokai Tokkyo JP 01 222 797

    Google Scholar 

  75. Nakayama K, Honda H, Ogawa Y, Ozawa T, Ota T (1988) Germ Offen DE 3 728 321

    Google Scholar 

  76. Nakayama K, Ota T (1989) Jpn Kokai Tokkyo JP 01 213 258

    Google Scholar 

  77. Nakayama K, Ota T (1989) Jpn Kokai Tokkyo JP 01 213 259

    Google Scholar 

  78. Nakayama K, Yuki O, Honda H, Okta T, Ozawa T (1989) Eur Patent Appl EP 319 344

    Google Scholar 

  79. Jung K, Kleber HP (1984) Wiss Z Karl-Marx-Univ Leipzig, Math-Naturwiss R 34: 293

    Google Scholar 

  80. Aurich H, Kleber HP, Sorger H, Tauchert H (1968) Eur J Biochem 6: 196

    Google Scholar 

  81. Aurich H, Kleber HP, Schöpp W (1967) Biochim Biophys Acta 139: 505

    Google Scholar 

  82. Kleber HP, Seim H, Aurich H, Strack E (1978) Arch Microbiol 116: 213

    Google Scholar 

  83. Goulas P (1988) Biochim Biophys Acta 957: 335

    Google Scholar 

  84. Mori N, Kasugai T, Kitamato Y, Ichikawa Y (1988) Agric Biol Chem 52: 249

    Google Scholar 

  85. Takahashi M, Nagasawa S, Matsuura K (1991) Ger Offen DE 4 032 287

    Google Scholar 

  86. Mori N, Shirota K, Kitamoto Y, Ichikawa Y (1988) Agric Biol Chem 52: 851

    Google Scholar 

  87. Schöpp W, Sorger H, Kleber HP, Aurich H (1969) Eur J Biochem 10: 56

    Google Scholar 

  88. Vandecasteele JP, Lemal J (1980) US Patent Appl US 4221 869

    Google Scholar 

  89. Vandecasteele JP (1980) Appl Environm Microbiol 39: 327

    Google Scholar 

  90. Vandecasteele JP, Ballerini D, Lemal J, Le Penru Y (1985) US Patent Appl US 4 542 098

    Google Scholar 

  91. Souppe J, Haurat G, Goulas P (1987) Eur Patent Appl EP 240 423

    Google Scholar 

  92. Souppe J, Gisele H, Philippe G (1989) Fr Demande FR 2 621 325

    Google Scholar 

  93. Chocat P, Masse F, Souppe J (1989) Fr Demande FR 2 623 520

    Google Scholar 

  94. Donishi J, Yokozeki K (1989) Jpn Kokai Tokyo Koho JP 01 117 794

    Google Scholar 

  95. Schöpp W, SchÄfer A (1985) Fresenius Z Anal Chem 320: 285

    Google Scholar 

  96. Comtat M, Galy M, Goulas P, Souppe J (1988) Anal Chim Acta 208: 295

    Google Scholar 

  97. Aragozzini F, Maco E, Craveri R (1986) Appl Microbiol Biotechnol 24: 175

    Google Scholar 

  98. Brooks DW, Kellog RP, Cooper CS (1987) J Org Chem 52: 192

    Google Scholar 

  99. Nakamura K, Ushio K, Oka S, Ohno A, Yasni S (1984) Tetrahedron Lett 25: 3979

    Google Scholar 

  100. Fuganti C, Grasselli P (1985) Tetrahedron Lett 26: 101

    Google Scholar 

  101. Sih CJ (1987) US Patent Appl US 4 710 468

    Google Scholar 

  102. Sih CJ, Chen C (1984) Angew Chem 96: 556

    Google Scholar 

  103. Bare G, Jacques P, Hubert JB, Rikir R, Thonart P (1991) Appl Biochem Biotechnol 28/29: 445

    Google Scholar 

  104. Lindstedt G (1967) Biochemistry 6: 1271

    Google Scholar 

  105. Abbot M, Udenfried S (1974) In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic, New York, p 167

    Google Scholar 

  106. Hayaishi O, Nozaki M, Abbott MT (1981) Oxygenases: Dioxygenases. In: Boyer PD (ed) The enzymes, Academic, New York, vol 12, p 119

    Google Scholar 

  107. Lindstedt G, Lindstedt S, Nordin I (1977) Biochemistry 16: 2181

    Google Scholar 

  108. Kondo A, Blanchard JS, Englard S (1981) Arch Biochem Biophys 212: 338

    Google Scholar 

  109. Lindstedt G, Lindstedt S, Midtvedt T, Tofft M (1967) Biochemistry 6: 1262

    Google Scholar 

  110. Lindstedt G, Lindstedt S (1970) J Biol Chem 245: 4178

    Google Scholar 

  111. Blanchard JS, Englard S, Kondo A (1982) Arch Biochem Biophys 219: 327

    Google Scholar 

  112. Punekar NS, Wehbie RS, Lardy HA (1987) J Biol Chem 262: 6720

    Google Scholar 

  113. Wehbie RS, Punekar NS, Lardy HA (1988) Biochemistry 27: 2222

    Google Scholar 

  114. Lindstedt G, Lindstedt S, Tofft M (1970) Biochemistry 9: 4336

    Google Scholar 

  115. Lindstedt S, Nordin I (1984) Biochem J 223: 119

    Google Scholar 

  116. Lindblad B, Lindstedt G, Tofft M, Lindstedt S (1969) J Am Chem Soc 91: 4606

    Google Scholar 

  117. Englard S, Blanchard S, Midelfort CF (1985) Biochemistry 24: 1110

    Google Scholar 

  118. Holme E, Lindstedt S, Nordin I (1982) Biochem Biophys Res Commun 107: 518

    Google Scholar 

  119. Cavazza C (1982) Ger Offen DE 31 23 975

    Google Scholar 

  120. Kulla H, Lehky P (1985) Eur Patent Appl EP 0158194

    Google Scholar 

  121. Kulla H, Lehky P, Squaratti A (1986) Eur Patent Appl EP 0195 944

    Google Scholar 

  122. Kulla HG (1991) Chimia 45: 81

    Google Scholar 

  123. Nobile S, Deshusses J (1986) J Bacteriol 168: 780

    Google Scholar 

  124. Nobile S, Baccino D, Takagi T, Deshusses J (1988) J Bacteriol 170: 5236

    Google Scholar 

  125. Nobile S, Baccino D, Deshusses J (1988) FEBS Lett 233: 335

    Google Scholar 

  126. Nobile S, Deshusses J (1988) Biochimie 70: 1411

    Google Scholar 

  127. Nobile S, Deshusses J (1988) J Chromat 449: 331

    Google Scholar 

  128. Watanuki M (1990) Jpn Kokai Tokkyo Koho JP 02 119 786

    Google Scholar 

  129. Nakayama K, Miyama M (1990) Jpn Kokai Tokkyo Koho JP 02 69 189

    Google Scholar 

  130. Nakayama K, Miyama M (1990) Jpn Kokai Tokkyo Koho JP 02 69 188

    Google Scholar 

  131. Seim H, Ezold R, Kleber HP, Strack E (1980) Z Allg Mikrobiol 20: 591

    Google Scholar 

  132. Seim H, Löster H, Claus R, Kleber HP, Strack E (1982) FEMS Microbiol Lett 13: 201

    Google Scholar 

  133. Seim H, Löster H, Claus R, Kleber HP, Strack E (1982) Arch Microbiol 132: 91

    Google Scholar 

  134. Seim H, Löster H, Kleber HP (1982) Acta Biol Med Germ 41: 1009

    Google Scholar 

  135. Seim H, Kleber HP, Strack E (1979) Z Allg Mikrobiol 19: 753

    Google Scholar 

  136. Jung H, Jung K, Kleber HP (1989) Biochim Biophys Acta 1003: 270

    Google Scholar 

  137. Jung K, Jung H, Kleber HP (1987) J Basic Microbiol 27: 131

    Google Scholar 

  138. Seim H, Jung H, Löster H, Kleber HP (1985) Wiss Z Karl-Marx-Univ Leipzig, Math-Nat R 34: 287

    Google Scholar 

  139. Seim H, Löster H, Claus R, Kleber HP, Strack E (1983) DD 221 905

    Google Scholar 

  140. Seim H, Kleber HP (1988) Appl Microbiol Biotechnol 27: 538

    Google Scholar 

  141. Jung H, Kleber HP (1990) l-Carnitine synthesis by stereoselective hydration of crotonobetaine. In: Christiansen C, Munck L, Villadsen J (eds) 5th European Congress on Biotechnol 8–13 July 1990. Munksgaard Copenhagen, vol I, p 251

    Google Scholar 

  142. Jung H, Jung K, Kleber HP (1989) Eur Patent Appl EP 0 320 460

    Google Scholar 

  143. Yokozeki K, Takahashi S, Hirose Y, Kubota K (1988) Agric Biol Chem 52: 2415

    Google Scholar 

  144. Fukui S, Kawamura M, Akutsu S, Fukuda H (1984) Jpn Kokai Tokkyo Koho JP 61 67 499

    Google Scholar 

  145. Kawamura T, Iinuma S, Shinagawa S (1985) Jpn Kokai Tokkyo Koho JP 60 214 890

    Google Scholar 

  146. Kawamura M, Akutsu S, Fukuda H, Hata H, Morishita T, Kano K, Nishimori H (1986) Jpn Kokai Tokkyo Koho JP 61 234 788

    Google Scholar 

  147. Kawamura M, Akutsu S, Fukuda H, Hata H, Morishita T, Kano K, Nishimori H (1986) Jpn Kokai Tokkyo Koho JP 61 234 794

    Google Scholar 

  148. Kawamura M, Akutsu S, Fukuda H, Hata H, Morishita T, Kano K, Nishimori H (1986) Jpn Kokai Tokkyo Koho JP 61 271 995

    Google Scholar 

  149. Kawamura M, Akutsu S, Fukuda H, Hata H, Morishita T, Kano K, Nishimori H (1986) Jpn Kokai Tokkyo Koho JP 61 271 996

    Google Scholar 

  150. Whitesides GM, Wong CH (1985) Angew Chem 97: 617

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Jung, H., Jung, K., Kleber, H.P. (1993). Synthesis of l-carnitine by microorganisms and isolated enzymes. In: Measurement and Control. Advances in Biochemical Engineering/Biotechnology, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007385

Download citation

  • DOI: https://doi.org/10.1007/BFb0007385

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56536-9

  • Online ISBN: 978-3-540-47587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics