Skip to main content

Genetically engineered microorganisms to rescue plants from frost injury

  • Chapter
  • First Online:
Measurement and Control

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 50))

  • 127 Accesses

Abstract

Ice nucleation active bacteria belonging to genera Pseudomonas, Xanthomonas and Erwinia contribute to frost damage to plants by initiating the formation of ice in plants that would otherwise supercool and avoid the damaging ice formation. The biological control of frost injury can be achieved by the application of non-ice nucleation active bacteria to the plant surfaces before they become colonized by Ice + species. ice genes have been cloned from Pseudomonas and isogenic Ice derivatives constructed via genetic manipulations. These genetically engineered microorganisms (GEMs) have been released into the environment to control the frost damage. The incidence of frost injury to the plants has, thereby, been reduced by 50–85% during natural frosts. These GEMs do not survive in soil and show no aerial dispersal in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cairns J, Pratt JR (1986) Aquat Toxicol Environ Fate 9: 207

    Google Scholar 

  2. Lindow SE, Panopoulos NJ, McFarland BL (1989) Science 244: 1300

    Google Scholar 

  3. Lindow SE, Panopoulos NJ (1988) In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) The release of genetically engineered micro-organisms, Academic, London, p 121

    Google Scholar 

  4. Lindow SE (1983) Plant Disease 67: 327

    Google Scholar 

  5. Gross DC, Cody YS, Proebsting EL, Radamaker GK, Spotts RA (1984) Phytopathology 74: 241

    Google Scholar 

  6. Vigouroux A (1989) Plant Disease 73: 854

    Google Scholar 

  7. Arai S, Watanabe M (1986) Agric Biol Chem 50: 169

    Google Scholar 

  8. Warren G, Wolber P (1991) Mol Microbiol 5: 239

    Google Scholar 

  9. Zhao J, Orser CS (1990) Mol Gen Genet 233: 163

    Google Scholar 

  10. Watanabe M, Emori Y, Arai S, Watabe S (1990) Mol Microbiol 4: 1871

    Google Scholar 

  11. Lindow SE, Panopoulos NJ, Pierce C, Andersen G, Lim G (1988) Phytopathology 78: 1552

    Google Scholar 

  12. Parker J (1963) Bot Rev 29: 124

    Google Scholar 

  13. Burke JJ, Gusta LA, Quamme HA, Weiser CJ, Li PH (1976) Ann Rev Plant Physiol 27: 507

    Google Scholar 

  14. Chandler WH (1958) Proc Ann Soc Hortic Sci 64: 552

    Google Scholar 

  15. Levitt J (1972) In: Responses of plant to environmental stress. Academic, New York, p 306

    Google Scholar 

  16. Mazur P (1969) Ann Rev Plant Physiol 20: 419

    Google Scholar 

  17. Schnell RC, Vali G (1972) Nature 236: 163

    Google Scholar 

  18. Lindow SE, Arny DC, Upper CD (1978) Appl Environ Microbiol 36: 831

    Google Scholar 

  19. Gross DC, Cody YS, Proebsting EL, Radamaker GK, Spotts RA (1983) Appl Environ Microbiol 46: 1370

    Google Scholar 

  20. Gross DC, Proebsting EL, Jr., Andrews GK (1984b) J Am Soc Hortic Sci 109: 375

    Google Scholar 

  21. Montesinos E, Vilardell (1991) Phytopathology 81: 113

    Google Scholar 

  22. Vali G, Stansbury EJ (1966) Can J Physiol 44: 477

    Google Scholar 

  23. Vali G (1971) J Atoms Sci 28: 402

    Google Scholar 

  24. Zettelmeyer AC, Teheurekdjian N, Chessick JJ (1961) Nature 192: 653

    Google Scholar 

  25. Maki LR, Galyan EL, Chang-Chien M, Caldwell DR (1974) Appl Microbiol 28: 456

    Google Scholar 

  26. Lindow SE (1978) In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress mechanism and crop improvement. Academic, New York, p 395

    Google Scholar 

  27. Maki LR, Willoughby KJ (1978) J Appl Meteorol 17: 1049

    Google Scholar 

  28. Anderson SA, Ashworth EN (1986) Plant Physiol 80: 956

    Google Scholar 

  29. Kieft TL (1988) Appl Environ Microbiol 54: 1678

    Google Scholar 

  30. Kieft TL, Ahmadjian V (1989) Lichenologist 21: 355

    Google Scholar 

  31. Anderson JA, Buchanan DW, Stall RE, Hall CB (1982) J Am Soc Hortic Sci 107: 123

    Google Scholar 

  32. Anderson JA, Buchanan DW, Stall RE (1984) J Am Soc Hortic Sci 110: 401

    Google Scholar 

  33. Arny DC, Lindow SE, Upper CD (1976) Nature 262: 282

    Google Scholar 

  34. Yankofsky SA, Levin Z, Moshe A (1981) Curr Microbiol 5: 213

    Google Scholar 

  35. Lim HK, Orser C, Lindow SE, Sands DC (1987) Plant Disease 71: 994

    Google Scholar 

  36. Obata H, Takinamek, Tanishita J, Hasegawa Y, Kawate S, Tokuyama T, Ueno T (1990) Agric Biol Chem 54: 1990

    Google Scholar 

  37. Crosse JE (1971) In: Preece TF, Dickison CH (eds) Ecology of leaf surface micro-organisms, Academic, London, p 282

    Google Scholar 

  38. Lindow SE (1983) Ann Rev Phytopath 21: 363

    Google Scholar 

  39. Paulin JP, Luisetti J (eds) (1978) Proceedings of the 4th International conference on plant pathogenic bacteria, vol 2, Angers, France, Inst Nat Rech Agron, Beaucouze, 1978, p 717

    Google Scholar 

  40. Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliott RA, Schroth MN (1980) Rev Plant Pathol 59: 153

    Google Scholar 

  41. Newton D, Hayward AC (1986) Plant Pathol 15: 71

    Google Scholar 

  42. Lindow SE (1986) In: Day PR (ed) Biotechnology and crop improvement and protection, BCPC Monograph No. 34, British Crop Protection Council, Cambridge, U.K., p 185

    Google Scholar 

  43. Hirano SS, Maher EA, Kelman A, Upper CD (eds) (1978) Proceedings of the 4th International conference on plant pathogenic bacteria, vol 2, Angers, France, Inst Nat Rech Agron, Beaucouze, 1978, p 717

    Google Scholar 

  44. Lindow SE, Arny DC, Barchet WR, Upper CD (1978) In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress mechanism and crop improvement, Academic, New York, p 249

    Google Scholar 

  45. Lindow SE, Hirano SS, Arny DC, Upper CD (1982) Plant Physiol 70: 1090

    Google Scholar 

  46. Lindow SE, Connell JH (1984) J Am Soc Hortic Sci, 109: 48

    Google Scholar 

  47. Lindow SE (1987) Appl Environ Microbiol 53: 2520

    Google Scholar 

  48. Hirano SS, Upper CD (1986) Methods Enzymol 127: 730

    Google Scholar 

  49. Hirano SS, Baker LS, Upper CD (1985) Plant Physiol 77: 259

    Google Scholar 

  50. Lindow SE (1982) In: Mount MS, Lacy GH (eds) Phytopathogenic prokaryotes, vol 1. Academic, New York, p 335

    Google Scholar 

  51. Phelps P, Gidding TH, Prochoda M, Fall R (1986) J Bacteriol 1967: 496

    Google Scholar 

  52. Turner MA, Arellano F, Kozloff LM (1990) J Bacteriol 172: 2521

    Google Scholar 

  53. Orser C, Staskawicz BJ, Panopoulos NJ, Dahlbeck D, Lindow SE (1985) J Bacteriol 164: 359

    Google Scholar 

  54. Green RL, Warren GJ (1985) Nature 317: 645

    Google Scholar 

  55. Corroto L, Wolber PK, Warren GJ (1986) EMBO J 5: 231

    Google Scholar 

  56. Warren G, Corotto L (1989) Gene 85: 239

    Google Scholar 

  57. Buttner MP, Amy PS (1989) Appl Environ Microbiol 55: 1690

    Google Scholar 

  58. Warren GJ, Lindemann J, Suslow TV, Green RL (1987) Ice deficient bacteria as frost protection agents. In: LeBaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds). Biotechnology in agricultural chemistry. American Chemical Society, Washington DC, p 215

    Google Scholar 

  59. Wolber PK, Deininger CA, Southworth MW, Vandekerckhove J, Van Montagu M, Warren GJ (1986) Proc Natl Acad Sci (USA) 83: 1194

    Google Scholar 

  60. Govindarajan AG, Lindow SE (1988) Proc Natl Acad Sci (USA) 85: 771

    Google Scholar 

  61. Deininger CA, Mueller GM, Wolber PK (1988) J Bacteriol 170: 669

    Google Scholar 

  62. Kaku S (1975) Cryobiology 12: 154

    Google Scholar 

  63. Kozloff LM, Schofield MA, Lute M (1983) J Bacteriol 153: 222

    Google Scholar 

  64. Sprang ML, Lindow SE (1981) Phytopathology 71: 256

    Google Scholar 

  65. Kozloff LM, Lute M, Westaway D (1984) Science 226: 845

    Google Scholar 

  66. Govindarajan AG, Lindow SE (1988) J Biol Chem 263: 9333

    Google Scholar 

  67. Kozloff LM, Turner MA, Arellano F, Lute M (1991) J Bacteriol 173: 2053

    Google Scholar 

  68. Southworth MW, Wolber PK, Warren GJ (1988) J Biol Chem 263: 15211

    Google Scholar 

  69. Jasson JT, Holben WE, Tiedje JM (1989) App Environ Microbiol 55: 3032

    Google Scholar 

  70. Lindow SE (1988a) In: Megusar F (ed) Microbiol ecology. Am Soc Microbiol Washington, p 187

    Google Scholar 

  71. Lindow SE (1986) Phytopathology 76: 1194

    Google Scholar 

  72. Ashworth EN (1990) Plant Physiol 92: 718

    Google Scholar 

  73. Pooley L, Brown TA (1991) FEMS Microbiol Lett 77: 229

    Google Scholar 

  74. Orser CS, Staskawicz BJ, Loper J, Panopoulos NJ, Dahlbeck D, Lindow SE, Schroth MM (1983) In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlin Heidelberg New York, p 353

    Google Scholar 

  75. Orser CS, Lotstein R, Lathue E, Wills DK, Panopoulos NJ, Lindow SE (1984) Phytopathology 74: 798

    Google Scholar 

  76. Ruvkun GB, Ausubel FM (1981) Nature (London) 289: 858

    Google Scholar 

  77. Ried J, Collmer A (1987) Gene 57: 239

    Google Scholar 

  78. Lindow SE (1985a) In: Windel CE, Lindow SE (eds) Biological control on the phylloplane. Am Phytopath Soc St Pauli, p 83

    Google Scholar 

  79. Lindow SE (1988) Megusar F, Gantor M (eds) In: Microbial ecology, Slovene Society for Microbiology, Ljuvljana, p 509

    Google Scholar 

  80. Warren GJ, Lindemann J, Suslow TV, Green RL (1987) In: LeBaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) ACS symposium series 334 Biotechnology in agricultural chemistry. American Chemical Society, Washington DC, p 215

    Google Scholar 

  81. Holben WE, Jasson JK, Chelm BK, Tiedje JM (1988) Appl Environ Microbiol 54: 784

    Google Scholar 

  82. Simon R, Priefer U, Pühler A (1983) Biotechnology 1: 784

    Google Scholar 

  83. Selvaraj G, Iyer VN (1985) Plasmid 13: 70

    Google Scholar 

  84. Brill WJ (1985) Science 227: 381

    Google Scholar 

  85. Supkoff DM, Bezark LG, Opgenorth D (1989) In: Monitoring of winter 1987 first release of genetically engineered bacteria in Contra Costa Country. Report BC-88-1, Dept of Food and Agric Sacramento, California

    Google Scholar 

  86. Lindow SE, Arny DC, Upper CD (1978) Appl Environ Microbiol 36: 831

    Google Scholar 

  87. Hirano SS, Upper CD (1983) Ann Rev Phytopath 21: 243

    Google Scholar 

  88. Lindow SE (1985) In: Halvorson OH, Pramer D, Rogul M (eds) Engineered organisms in the environment. Am Soc Microbiol, Washington DC, p 23

    Google Scholar 

  89. Lindow SE (1988) Phytopathology 76: 1331

    Google Scholar 

  90. Lindemann J, Suslow TV (1987) Phytopathology 77: 882

    Google Scholar 

  91. Lindow SE, Arny DC, Upper CD (1983) Phytopathology 73: 1097

    Google Scholar 

  92. Lindow SE, Arny DC, Upper CD (1983) Phytopathology 73: 1102

    Google Scholar 

  93. Lim HK, Orser C, Lindow SE, Sands DC (1987) Plant Disease 71: 994

    Google Scholar 

  94. Abe K, Watabe S, Emori Y, Watanabe M, Arai S (1989) FEBS Lett 258: 297

    Google Scholar 

  95. Warren G, Corotto L, Wolber PK (1986) Nucleic Acids Res 14: 8047

    Google Scholar 

  96. Morel JL, Bitton G, Chaudhary G, Awong J (1989) Curr Microbiol 18: 355

    Google Scholar 

  97. Lindow SE, Wills DK, Panopoulos NJ (1987) Phytopathology 77: 1768

    Google Scholar 

  98. Laben C (1965) Ann Rev Phytopathol 3: 209

    Google Scholar 

  99. Laben C, Daft GC (1965) Phytopathology 55: 760

    Google Scholar 

  100. Laben C, Schroth MN, Hildebrand DC (1970) Phytopathology 60: 677

    Google Scholar 

  101. Ki-Chung Kim, Young-Cheolkim, Baik-HoCho (1989) Phytopathology 79: 275

    Google Scholar 

  102. Beer SV, Norelli JL, Rundle JR, Hodges SS, Palmer JR, Stein JL Aldwinckle HS (1980) Phytopathology 70: 459

    Google Scholar 

  103. Chakravarti BP, Laben C, Daft GC (1972) Can J Microbiol 18: 696

    Google Scholar 

  104. Lindow SE (1985) In: Fokkema N (ed) Microbiology of the phylloplane, Cambridge University Press, London, p 293

    Google Scholar 

  105. Lindow SE, Knudsen GR, Seidler RJ, Watter MV, Lambou VM, Arny PS, Schmedding D, Prince V, Herns S (1988) Appl Environ Microbiol 54: 1557

    Google Scholar 

  106. Lindow SE, Arny DC, Upper CD (1978) Phytopathology 68: 523

    Google Scholar 

  107. Lindow SE, Knudsen GR, Seidler RJ, Walter MV, Lambou VM, Arny PS, Schmedding D, Prince V, Herns S (1988) Appl Environ Microbiol 54: 2281

    Google Scholar 

  108. Jones DA, Rijder MH, Clare BG, Ferrand SK, Kerr A (1988) Mol Gen Genet 212: 207

    Google Scholar 

  109. Suslow TV (1989) Phytopathology 79: 1151

    Google Scholar 

  110. Choudhary G, Awong J (1989) Curr Microbiol 18: 355

    Google Scholar 

  111. Knudsen GR (1989) Appl Environ Microbiol 55: 2641

    Google Scholar 

  112. Klement Z, Rozsnyay DS, Balo E, Panczel M, Prileszky G (1984) Physiol Plant Pathol 24: 237

    Google Scholar 

  113. Ashworth EN, Anderson JA, Davis GA (1985) J Am Soc Hortic Sci 110: 287

    Google Scholar 

  114. Lindemann J, Joe L, Moayeri A (1985) Phytopathology 75: 1361

    Google Scholar 

  115. Lindow SE, Staskawicz BJ (1981) Phytopathology 71: 237

    Google Scholar 

  116. Lindow SE, Arny DC, Upper CD (1982) Plant Physiol 70: 1084

    Google Scholar 

  117. Lindow SE (1985) In: Fokkema N, Van Den Heuvel J (eds) Microbiology of phyllosphere, Cambridge University Press, London, p 293

    Google Scholar 

  118. Hirano SS, Upper CD (1986) In: Fokkema NJ, Van Den Heuvel J (eds) Microbiology of phyllosphere, Cambridge University Press, London, p 235

    Google Scholar 

  119. Hirano SS, Nordheim EV, Arny DC, Upper CD (1982) Appl Environ Microbiol 44: 695

    Google Scholar 

  120. Makino T (1982) Ann Phytopathol Soc Japan 48: 452

    Google Scholar 

  121. Keller M, Müller P, Simon R, Pühler A (1988) Mol Plant Microbe Interact 1: 267

    Google Scholar 

  122. Obata H, Saeki Y, Tanishita J, Tokuyama T, Higashi Y (1987) Agric Biol Chem 51: 1761

    Google Scholar 

  123. Obata H, Nakai T, Tanishita J, Tokuyama T (1989) J Ferment Bioeng 67: 143

    Google Scholar 

  124. Goto M, Haung BL, Makino T, Goto T, Inaba T (1988) Ann Phytopathol Soc Jpn 54: 189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Dar, G.H., Anand, R.C., Sharma, P.K. (1993). Genetically engineered microorganisms to rescue plants from frost injury. In: Measurement and Control. Advances in Biochemical Engineering/Biotechnology, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007384

Download citation

  • DOI: https://doi.org/10.1007/BFb0007384

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56536-9

  • Online ISBN: 978-3-540-47587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics