Skip to main content

Development of guidance laws for accelerating missile

  • Conference paper
  • First Online:
  • 340 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 151))

Abstract

The most widely-used guidance law for short range homing missiles is Proportional Navigation (Pro. Nav.). In Pro. Nav. the acceleration command is proportional to the line of sight angular velocity (L.O.S rate). Indeed, if a missile and a target move on collision course with constant speeds the L.O.S rate is zero.

The speed of a highly maneuverable modern missile varies cnsiderably during flight. The performance using Pro. Nav. is far from being satisfactory.

In this work we analyze the collision course for a variable speed missile and define a guidance law that turns the heading of the missile towards a collision course. We develop guidance laws based on optimal control and differential games, and note that the optimal laws coincide with the ‘Guidance to Collision’ law at the moment of impact.

We demonstrate the improvement in the missile performance using the new guidance law, relative to Pro. Nav. .

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryson, A.E., and Yu-Chi Ho, Applied Optimal Control; Hemisphere Publishing Corp., pp. 154–155, 1975.

    Google Scholar 

  2. Ho, Y.C., Bryson, A.E., and Baron, S., “Differential games and optimal pursuit-evasion strategies”, IEEE Trans. of Automatic Control, Vol. AC-10, 4, Oct. 1965, pp. 385–389.

    Article  Google Scholar 

  3. Gutman, S., Leitmann, G., “Optimal Strategies in the Neighborhood of a Collision Course”, AIAA Journal, Vol. 14, No. 9, pp. 1210–1212, Sept. 1976.

    Google Scholar 

  4. Garnell, P., Guided Weapon Control Systems, 2nd ed.; Pergamon Press, 1980.

    Google Scholar 

  5. Riggs, T., “Linear Optimal Guidance for Short Range Air to Air Missile”, Proc. of National Aerospace and Electronics Conf., May 1979, Vol. II, pp. 757–764.

    Google Scholar 

  6. Lee, G.K.F, “Estimation of the Time-to-Go Parameter for Air to Air Missiles”, J. Guidance, Vol. 8, No. 2, pp. 262–266, Mar.–Apr. 1985.

    Google Scholar 

  7. Vergez, P.L., “Linear Optimal Guidance for an AIM-9L Missile”, J. Guidance and Control, Vol. 4, No. 6, pp. 662–663, Nov.–Dec. 1981.

    Google Scholar 

  8. Hull, D.G., Mack, R.E., “Prediction of Time-To-Go for A Homing Missile Using Bang-Bang Control”, AIAA paper No. 88-4065-CP.

    Google Scholar 

  9. Jarmark B.S.A, Merz, A.W., Breakwell, J.V., “The Variable Speed Tail Chase Aerial Combat Problem”, J. Guidance and Control, Vol. 4, No. 3, May–June 1981, pp. 323–328.

    Google Scholar 

  10. Hillberg, C., Jarmark, B.S.A., “Pursuit-Evasion Between Two Realistic Aircraft”, J. Guidance, Vol. 7, No. 6, Nov.–Dec. 1984, pp. 690–694.

    Google Scholar 

  11. Yavin, Y., De Villiers, R., “Proportional Navigation and The Game of Two Cars: The Case of Pursuer with Variable Speed”, Computers Math. Applic., Vol. 18, No. 1–3, pp. 69–76, 1989.

    Article  Google Scholar 

  12. Yavin, Y., De Villiers, R., “Game of Two Cars: Case of Variable Speed”, Journal of Optimization Theory and Applications, Vol. 60, No. 2, Feb. 1989, pp. 327–339.

    Article  Google Scholar 

  13. Prasad, U.R., Rajan, N., Rao, N.J., “Planar Pursuit-Evasion with Variable Speeds, Part 1, Extremal Trajectory Maps”, and “... Part 2, Barrier Sections”, Journal of Optimization Theory and Applications, Vol. 33, No. 3, pp. 401–432, Mar. 1981.

    Article  Google Scholar 

  14. Green, A., Shinar, J., Guelman, M., “Guidance Law Synthesis Based on A Planar Pursuit-Evasion Game Solution”. Differential Games and Applications; Lecture Notes in Control and Information Sciences, no. 119, T.S Basar, P. Bernhard (Eds.), Springer Verlag.

    Google Scholar 

  15. Sridhar, B., Gupta, N.K, “Missile Guidance Laws Based on Singular Perturbation Methodology”, J. Guidance and Control, Vol. 3, No. 2, Mar.–Apr. 1980.

    Google Scholar 

  16. Cheng, V.H.L, Gupta, N.K, “Advanced Midcourse Guidance for Air to Air Missiles”, Journal of Guidance, Control and Dynamics, vol. 9, Mar.–Apr. 1986, pp. 135–142.

    Google Scholar 

  17. Goldstein, F., Calise, A., “Non Linear State Feedback Control for Near Optimal Intercept in Three Dimensions”, AIAA Paper no. 79–1673.

    Google Scholar 

  18. Garber, V., “Optimum Interpcept Laws for Accelerating Targets”, AIAA Journal, Vol. 6, No. 7, pp. 2196–2198, Nov. 1968.

    Google Scholar 

  19. Gutman, S., “On Optimal Guidance for Homing Missiles”, J. Guidance and Control, Vol. 2, No. 4, pp. 296–300, Jul.–Aug. 1979.

    Google Scholar 

  20. Jerger, J., Systems Preliminary Design; D. Van Nostrand Company Inc., 1960, eq. 5–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. M. Skowronski H. Flashner R. S. Guttalu

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Gazit, R., Gutman, S. (1991). Development of guidance laws for accelerating missile. In: Skowronski, J.M., Flashner, H., Guttalu, R.S. (eds) Mechanics and Control. Lecture Notes in Control and Information Sciences, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0006723

Download citation

  • DOI: https://doi.org/10.1007/BFb0006723

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53517-1

  • Online ISBN: 978-3-540-46752-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics