Skip to main content

Differentiability of Min Max and saddle points under relaxed assumptions

  • Conference paper
  • First Online:
Boundary Control and Boundary Variation

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 178))

  • 147 Accesses

Abstract

The object of this paper is to present new theorems on the differentiability of an Infimum, Supremum, Min Max, or saddle point with respect to a parameter t≥0 at t=0 under relaxed assumptions. Those technical results have a wide spectrum of applications: Control Theory, Shape Sensitivity Analysis, Game Theory, etc... In non-differentiable situations they provide an interesting description of the non-differentiability.

The research of the first author has been supported by a Killam Fellowship from Canada Council, Natural Sciences and Engineering Research Council of Canada operating grant A-8730, and a FCAR grant from the “Ministère de l'éducation du Québec”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Correa and A. Seeger, Directional derivatives of a minimax function, Nonlinear Analysis, Theory, Methods and Applications 9 (1985), 13–22.

    Google Scholar 

  2. M.C. Delfour and J. Morgan, “A complement to the differentiability of saddle points and Min Max,” CRM Report CRM-1682, Université de Montréal, Canada, July 1990.

    Google Scholar 

  3. M.C. Delfour and J.-P. Zolésio, Dérivation d'un MinMax et application à la dérivation par rapport au contrôle d'une obscrvation non-différentiable de l'état, C.R. Acad. Sc. Paris, t.302, Sér. I, no. 16 (1986), 571–574.

    Google Scholar 

  4. , Shape Sensitivity Analysis via MinMax Differentiability, SIAM J. on Control and Optimization 26 (1988), 834–862.

    Google Scholar 

  5. , Differentiability of a MinMax and Application to Optimal Control and Design Problems, Part I, in “Control Problems for Systems Described as Partial Differential Equations and Applications,” I. Lasiecka and R. Triggiani, eds., Springer-Verlag, New York, 1987, pp. 204–219.

    Google Scholar 

  6. , Differentiability of a MinMax and Application to Optimal Control and Design Problems, Part II, in “Control Problems for Systems Described as Partial Differential Equations and Applications,” I. Lasiecka and R. Triggiani, eds., Springer-Verlag, New York, 1987, pp. 220–229.

    Google Scholar 

  7. , Further Developments in Shape Sensitivity Analysis via a Penalization Method, in “Boundary Control and Boundary Variations,” J. P. Zolésio, ed., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988, pp. 153–191.

    Google Scholar 

  8. , Shape Sensitivity Analysis via a Penalization Method, Annali di Matematica Pura ed Applicata CLI (1988), 179–212.

    Google Scholar 

  9. , Analyse des problèmes de forme par la dérivation des Min Max, in “Analyse Non Linéaire,” H. Attouch, J.P. Aubin, F.H. Clarke and I. Ekeland, eds, Série Analyse Non Linéaire, Annales de l'Institut Henri-Poincaré, Special volume in honor of J.-J. Moreau, Gauthier-Villars, Bordas, Paris, France, 1989, pp. 211–228.

    Google Scholar 

  10. M.C. Delfour J.-P. Zolésio, Anatomy of the shape Hessian, Annali di Matematica Pura et Applicata CLVIII (1989).

    Google Scholar 

  11. M.C. Delfour J.-P. Zolésio, Computation of the shape Hessian by a Lagrangian method, in “Fifth Symp. on Control of Distributed Parameter Systems,” A. El Jai and M. Amouroux, eds., Pergamon Press, 1989, pp. 85–90.

    Google Scholar 

  12. , Shape Hessian by the velocity method: a Lagrangian approach, in “Stabilization of Flexible Structures,” J.P. Zolésio, ed., Springer-Verlag, Berlin, New-York, 1990, pp. 255–279.

    Google Scholar 

  13. M.C. Delfour J.-P. Zolésio, Velocity method and Lagrangian formulation in the computation of the shape Hessian, SIAM J. on Control and Optimization 29 6 (1991) (to appear).

    Google Scholar 

  14. B. Lemaire, “Problèmes Min-Max et applications au contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles linéaires,” Thèse de doctorat d'état, Montpellier, France, 1970.

    Google Scholar 

  15. Lignola and J. Morgan, Topological existence and stability for MinSup problems, J. Math. Anal. Appl. (to appear).

    Google Scholar 

  16. J. Morgan, Constrained well posed two level optimization problems, in “E. Majorana School (Erice) on Non Smooth Optimization,” Plenum Press, 1989.

    Google Scholar 

  17. J. P. Zolésio, Domain variational formulation for free boundary problems, in “Optimization of Distributed Parameter Structures, vol II,” E.J. Haug and J. Céa, eds., Sijhofff and Nordhoff, Alphen aan den Rijn, The Netherlands, 1981, pp. 1089–1151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean Paul Zoléesio

Rights and permissions

Reprints and permissions

Copyright information

© 1992 International Federation for Information Processing

About this paper

Cite this paper

Delfour, M.C., Morgan, J. (1992). Differentiability of Min Max and saddle points under relaxed assumptions. In: Zoléesio, J.P. (eds) Boundary Control and Boundary Variation. Lecture Notes in Control and Information Sciences, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0006694

Download citation

  • DOI: https://doi.org/10.1007/BFb0006694

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55351-9

  • Online ISBN: 978-3-540-47029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics