Skip to main content

Analyses of various control schemes for continuous bioreactors

  • Conference paper
  • First Online:
Bioprocess Parameter Control

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 30))

Abstract

A common framework is laid through which the feasibilities and efficacies of various control schemes for continuous bioreactors can be evaluated using only the steady state information. It is shown that many important and practical conclusion can be drawn based on the steady state growth models. For this purpose two well known steady state growth models are used, the Monod model and the substrate inhibition model. The control schemes that are reviewed and theoretically analyzed in terms of potential advantages as well as disadvantages, include turbidostats, nutristats, pH-auxostats and those based on various rates such as the base addition rate, the oxygen absorption rate, the oxygen uptake rate, and carbon dioxide evaluation rate. The feasibility of these control schemes is tested by cheking the local controllability and/or stability criteria, while the practical effectiveness is evaluated by analyzing the steady state gains. Existence of input multiplicity is also checked to point out potentially poor static and/or dynamic performances. Finally, a new control scheme is proposed, which is superior to the conventional continuous bioreactor operations and which allows for a multivariable control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

system matrix or the Jacobian matrix [Eqs. (7) and (11)]

Am :

the Jacobian matrix [Eq. (76)]

a:

constant in model-3

B:

m × n matrix [Eqs. (7) and (77)]

BAR:

base addition rate, mmoles per h

BARd :

set point value of BAR

BC:

buffering capacity, mmoles per 1

b:

∂f/∂D [Eq. (12)]

b:

constant in model (3)

C:

l × n matrix [Eq. (8)]

c T :

vector defined in Eq. (58)

CER:

carbon dioxide evolution rate, mmole per l

c:

constant in model (3)

D:

dilution rate h−1

Ds, Ds1, Ds2 :

steady state dilution rates, h−1

Dc :

Fc/v h−1

Dm :

Fm/v h−1

DOC:

dissolved oxygen concentration

F:

total flow rate of medium, l h−1

Fc :

flow rate of concentrated stream, l h−1

Fm :

flow rate of medium or water stream, l h−1

f:

defined in Eq. (5)

f m :

defined in Eq. (71)

H+ :

hydrogen-ion concentration, moles per h

H +d :

set point value of H+

K:

proportional controller matrix [Eqs. (15)–(18)]

Kt T :

defined by Eq. (26)

K n T :

defined by Eq. (39)

Kb :

steady state gain of BAR-controlled bioreactor, mmoles

Kc, Kcb, Kcn, Kct :

proportional controller constants

Km :

constant in the Monod Model, g l−1

Kmx :

steady state gain of the modified turbidostat, (% w/v), h

Ks :

steady state gain of a nutristat, (% w/v), h

Kx :

steady state gain of a turbidostat, (% w/v), h

Ky :

steady state gain

Lc :

controllability matrix [Eqs. (9) and (13)]

L 0c :

output controllability matrix [Eqs. (10), (57) and (59)]

m:

maintenance constant, h−1

OAR:

oxygen absorption rate, moles per h

OOC:

off gas O2 concentration

OCC:

off gas CO2 concentration

OUR:

oxygen uptake rate, moles per h

(OH−):

hydroxide-ion concentration, moles per l

\(r_{H^ + }\) :

rate of acid production per unit volume moles H+ per h

\(r_{OH^ - }\) :

rate of base production per unit volume moles OH− per h

s:

substrate concentration, g l−1 or % w/v

sc :

concentration of substrate in the stream Fc, g l−1

sd :

setpoint value of S

sE :

effective feed substrate concentration, g l−1

sF :

feed substrate concentration, g l−1

t:

time, h

U:

vector of controls

v:

volume, l

X:

vector of states

x:

cell mass concentration, g l−1 or % w/v

xd :

setpoint value of x

Y:

vector of outputs

y:

cell mass yield, g cell per g substrate

y0 :

yield constant in the maintenance model

\(y_{H^ + /x}\) :

yield of acid, moles H+ per g cell mass

z:

defined in Eq. (19)

z(0):

initial value of z

α, Β:

constants

Μ:

specific growth rate, h−1

Îœm :

maximum specific growth rate, h−1

Τi, Τd :

controller constant

References

  1. Rolf, M. J., Lim, H. C.: Enzyme and Microbial Technology 4, 370 (1982)

    Google Scholar 

  2. Dorby, D. D., Jost, J. L.: in: Annual Reports on Fermentation Processes (Perlman, D., ed.), Vol. 1, p. 95, New York: Academic Press 1977

    Google Scholar 

  3. Novick, A.: Ann. Rev. Microbial. 9, 97 (1955)

    Google Scholar 

  4. Gerhardt, P.: J. Bact. 52, 283 (1946)

    Google Scholar 

  5. Bryson, V.: Science 116, 48 (1952)

    Google Scholar 

  6. Moss, F. J., Bush, F. E.: Biotech. Bioeng. 9, 585 (1967)

    Google Scholar 

  7. Zines, D. O.: Biotech. Bioeng. 12, 561 (1970)

    Google Scholar 

  8. Watson, T. G.: J. Appl. Chem. Biotechnol. 22, 229 (1972)

    Google Scholar 

  9. Edwards, V. H., Ko, R. C., Balogh, S. A.: Biotech. Bioeng. 15, 939 (1972)

    Google Scholar 

  10. Whaite, P., Gray, P. P.: Biotech. Bioeng. 19, 575 (1977)

    Google Scholar 

  11. DiBiasio, D., Lim, H. C., Weigand, W. A.: AIChE J. 27, 284 (1981)

    Google Scholar 

  12. Martin, G. A., Hempling, W. P.: Arch. Microbiol. 107, 41 (1976)

    Google Scholar 

  13. Stouthamer, A. H., Bettenhaussen, C. W.: Arch. Microbiol. 111, 21 (1976)

    Google Scholar 

  14. Driessen, F. M., Ubbels, J., Stadhouders, J.: Biotech. Bioeng. 19, 821 (1977)

    Google Scholar 

  15. Oltmann, L. F., Schoenmaker, G. S., Reijndero, W. N. M., Stouthamer, A. M.: Biotech. Bioeng. 20, 921 (1978)

    Google Scholar 

  16. McBean, R. D., Hall, R. J., Linklater, P. M.: Biotech. Bioeng. 21, 1517 (1979)

    Google Scholar 

  17. Hospodka, J.: Biotech. Bioeng. 8, 117 (1966)

    Google Scholar 

  18. Yano, T., Kobayashi, T., Shimiju, S.: J. Ferment. Technol. 56, 416 (1978)

    Google Scholar 

  19. Yamada, S., Wada, M., Chibata, I.: J. Ferment. Technol. 57, 210 (1979)

    Google Scholar 

  20. Watson, T. G.: J. Gen. Microbiol. 59, 83 (1969)

    Google Scholar 

  21. Lee, C.: Ph. D. Thesis, Purdue University, W. Lafayette, IN 47907, USA 1981

    Google Scholar 

  22. Frederickson, A. G., Ramkrishna, D., Tsuchiya, H. M.: Mathematical Biosciences 1, 327 (1967)

    Google Scholar 

  23. Fredrickson, A. G., Megee III, R. D., Tsuchiya, H. M.: Adv. Appl. Microbiol. 13, 419 (1970)

    Google Scholar 

  24. Monod, J.: Ann. Rev. Microbiol. 3, 371 (1949)

    Google Scholar 

  25. Andrews, J. F.: Biotech. Bioeng. 10, 707 (1968)

    Google Scholar 

  26. Chen, B. J., Lim, H. C., Tsao, G. T.: Biotech. Bioeng. 18, 1629 (1976)

    Google Scholar 

  27. Novick, A., Szilard, L.: Science 112, 715 (1950)

    Google Scholar 

  28. Novick, A., Szilard, L.: Proc. Natl. Acad. Sci. 36, 708 (1950)

    Google Scholar 

  29. Monod, J.: Ann. Inst. Pasteur 79, 390 (1950)

    Google Scholar 

  30. Yano, T., Koga, S.: Biotech. Bioeng. 11, 139 (1969)

    Google Scholar 

  31. Edwards, V. H.: Biotech. Bioeng. 12, 679 (1970)

    Google Scholar 

  32. Spicer, C. C.: Biometrics 11, 225 (1955)

    Google Scholar 

  33. Moser, M.: Proc. Natl. Acad. Sci. 113, 222 (1956)

    Google Scholar 

  34. Koga, S., Humphrey, A.: Biotech. Bioeng. 9, 375 (1967)

    Google Scholar 

  35. Herbert, D., Elsworfh, R., Telling, R. C.: J. Gen. Microbiol. 14, 601 (1956)

    Google Scholar 

  36. Mateles, R. I., Ryu, D. Y., Yasuda, T.: Nature 208, 263 (1965)

    Google Scholar 

  37. Storer, F. F., Gaudy, A. F.: Enviro. Sci. Technol. 3, 143 (1969)

    Google Scholar 

  38. Chi, C. T., Howell, J. A.: Biotech. Bioeng. 18, 63 (1976)

    Google Scholar 

  39. Lee, E. B., Markus, L.: Foundations of Optimal Control, New York: Wiley 1967

    Google Scholar 

  40. Ray, W. H.: Advanced Process Control, New York: McGraw-Hill 1981

    Google Scholar 

  41. Koppel, L. B.: AIChE J. 28, 935 (1982)

    Google Scholar 

  42. Agrawal, P., Lee, C., Lim, H. C., Ramkrishna, D.: Chemical Engineering Science 37, 453 (1982)

    Google Scholar 

  43. Fuld, G. J., Dunn, C. G.: Ind. Eng. Chem. 49, 1215 (1957)

    Google Scholar 

  44. Bach, H. P., Woehrer, W., Roehr, M.: Biotech. Bioeng. 20, 797 (1978)

    Google Scholar 

  45. Neujahr, H. Y., Kjellen, K. G.: Biotech. Bioeng. 21, 671 (1979)

    Google Scholar 

  46. Hikuma, M., Kubo, T., Yasuda, T., Karube, I., Suzuki, S.: Biotech. Bioeng. 21, 184 (1979)

    Google Scholar 

  47. Kobayashi, T., Yano, T., Mori, H., Shimizu, S.: Biotech. Bioeng. Symp. 9, 73 (1979)

    Google Scholar 

  48. Puhar, E., Guerra, L. M., Lorences, I., Fiechter, A.: Eur. of Appl. Microb. and Biotech. 9 (3), 227(1980)

    Google Scholar 

  49. Hewetson, J. W., Jong, T. H., Grey, P. P.: Biotech. Bioeng. Symp. 9, 125 (1979)

    Google Scholar 

  50. Luedeking, R., Piret, E. L.: J. Biochem. Microbial. Techn. Eng. 1, 393 (1959)

    Google Scholar 

  51. Gaudy, Jr., A. F.: Biotech. Bioeng. 17, 1051 (1975)

    Google Scholar 

  52. Brown, D. E., Halsted, D. J.: Biotech. Bioeng. 17, 1199 (1975)

    Google Scholar 

  53. Hopkins, T. R.: Biotech. Bioeng. 23, 2137 (1981)

    Google Scholar 

  54. Silman, R. W., Bagley, E. B.: Biotech. Bioeng. 21, 173 (1979)

    Google Scholar 

  55. Kjaergaard, L., Joergensen, B. B.: Biotech. Bioeng. Symp. 9, 85 (1979)

    Google Scholar 

  56. Wang, H. Y., Cooney, C. L., Wang, D. I. C.: Biotech. Bioeng. 27, 975 (1979)

    Google Scholar 

  57. Wang, H. Y., Cooney, C. L., Wang, D. I. C.: Biotech. Bioeng. Symp. 13 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Agrawal, P., Lim, H.C. (1984). Analyses of various control schemes for continuous bioreactors. In: Bioprocess Parameter Control. Advances in Biochemical Engineering/Biotechnology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0006380

Download citation

  • DOI: https://doi.org/10.1007/BFb0006380

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13539-5

  • Online ISBN: 978-3-540-39004-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics