Physical and chemical parameters of microbial growth

  • Armin Fiechter
Conference paper
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 30)


The observable behavior of a living cell in submerged culture results from the nature of underlying genetic information and its expression. Any expression of the genes is a matter of enzyme activity, which in turn is influenced by numerous factors of metabolic control mechanisms. Besides intracellularly located parameters, environmental factors also play an important role in the actual performance of microbes during growth.

The present review deals with those parameters that act on growth due to mechanisms working outside of the cell such as medium components and the methods which make them available for uptake. The numerous environmental effects can best be divided in the two categories of physical and chemical parameters.

The first category includes temperature, pressure, and the physical nature of the reaction mixture, including the problems of mixing and aeration. Emphasis is therefore given to the configuration of physical containments used in a bioprocess. The ultimate goal of any containment is the supply of nutrients to and the removal of metabolic products from the cell and the maintenance of a uniform distribution of the liquid, gaseous, and solid phases involved in the reaction mixture. Some data are also given on new principles for agitation and aeration. The advantages and drawbacks of the classical stirred tank and the air lift reactor are mentioned and these reactors are compared to three different loop forms used in research and partly in production plants. The tendency to further develop loop forms is becoming apparent, as these allow much better control of the flow pattern, irrespective of the viscosity, the uniform distribution of components, and an optimal supply of nutrients.

The second category of extracellular parameters includes the effects of medium containing substrate, nutrients, growth factors and trace elements. The proper selection of these components and their quantities is of great importance due to their potential effects on the metabolic performance of the cell. Continuous culture methods are shown to be of high efficiency for the fast identification of these effects, and a systematic concept for medium design is developed. Such a concept can replace the troublesome and arduous medium ‘optimization’ work based on trial and error. It allows for an exact evaluation of regulatory patterns at various growth rates and is therefore most suitable for metabolic studies and investigations of product formation.

The importance of medium designing and the development of appropriate hardware for growth is illustrated by some examples from studies using yeasts and bacteria. It is concluded that improved knowledge of the influence of physical and chemical parameters is prerequisite in any consistent work on metabolism and process development.


Dilution Rate Chemical Parameter Draft Tube Continuous Stir Tank Reactor Loop Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols and Explanation


carbon limitation


carbon limited


dilution rate (h−1)


critical dilution rate (h−1)


direct digital control


critical dilution rate for pure oxydative turnover (h−1)


mass transfer coefficient (liquid film) (kmol m−3 s−1)


saturation constant (mg l−1)


revolution per minute


oxygen transfer rate (mmol l−1 h−1)


oxygen uptake rate (mmol l−1 h−1)


power input (W l−1)

\(p_{o_2 }\)

dissolved oxygen (bar)

\(q_{co_2 }\)

specific rate of CO2 release (in moles g−1 h−1)

\(q_{o_2 }\)

specific rate of O2 uptake (in moles g−1 h−1)


specific product formation rate (eg. g g−1 h−1)


specific uptake rate of substrate (mmoles l−1 h−1; g l−1 h−1)


\(q_{co_2 } /q_{o_2 }\)


productivity (g g−1 h−1)


substrate (g l−1)


initial substrate concentration (g l−1)


single cell protein






specific growth rate (h−1)


maximal specific growth rate


biomass (g l−1)


yield (−)


Galilei number


Newton number


Reynolds number


compact loop reactor


flat blade turbine


jet loop reactor


propeller loop reactor


short loop reactor


stirred tank reactor


annular configuration


tower form reactor


tall loop reactor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finn, R. K.: Bacteriol. Rev. 18, 255 (1954)Google Scholar
  2. 2.
    Tsao, G.: Biotech. Bioeng. 12, 51 (1970)Google Scholar
  3. 3.
    Calderbank, B.: Biochem. and Biolog. Eng. Science (Blakebrough, N. ed.), New York: Academic Press 1967Google Scholar
  4. 4.
    Uhl, V. W., Gray, J. B. (eds.): Mixing Theory and Practice, New York: Academic Press 1967Google Scholar
  5. 5.
    Schuegerl, K.: Chem. Ing. Techn. 52 (12), 951 (1980)Google Scholar
  6. 6.
    Taguchi, H.: Adv. Biochem. Eng. 1, 1 (1971)Google Scholar
  7. 7.
    Brauer, H.: Adv. Biochem. Eng. 13, 87 (1979)Google Scholar
  8. 8.
    Yoshida, F.: Ind. Eng. Chem. 52, 435 (1960)Google Scholar
  9. 9.
    Cooper, C. M., Fernstrom, G. A., Miller, S. A.: Ind. Eng. Chem. 36, 504 (1944)Google Scholar
  10. 10.
    Calderbank, P. H.: Trans. Inst. Chem. Eng. 37, 173 (1959)Μ ibid 36, 443 (1958)Google Scholar
  11. 11.
    Zlokarnik, M.: Adv. Biochem. Eng. 11, 157 (1979)Google Scholar
  12. 12.
    Sinclair, C. G., Brown, D. E.: Biotech. Bioeng. 12, 1001 (1970)Google Scholar
  13. 13.
    Meier, C., Beyeler, W.: Biotech. Bioeng. (in press 1984)Google Scholar
  14. 14.
    Fan, L. T. et al.: Biotech. Bioeng. 12, 1019 (1970)Google Scholar
  15. 15.
    Charles, M.: Adv. Biochem. Eng. 8, 1 (1978)Google Scholar
  16. 16.
    Atkinson, B., Daoud, I. S.: Adv. Biochem. Eng. 4, 41 (1976)Google Scholar
  17. 17.
    Atkinson, B., Fowler, H. W.: Adv. Biochem. Eng. 3, 221 (1973)Google Scholar
  18. 18.
    Schumpe, A., Quicker, G., Deckwer, W.-D.: Adv. Biochem. Eng. 24, 1 (1982)Google Scholar
  19. 19.
    Swallow, B., Finn, R. K., Einsele, A.: Proc. 1st Europ. Congr. Biotech. Interlaken 1978Google Scholar
  20. 20.
    Gschwend, K. W.: Stofftransport in nicht-newtonschen Biosystemen. Diss. ETH Nr. 6975, Zurich 1982Google Scholar
  21. 21.
    Sittig, W., Heine, H.: Fortschritte der Verfahrenstechnik 14, 354 (1977); 11, 12 (1977)Google Scholar
  22. 22.
    Schuegerl, K.: Verwendung von Blasensaeulen als Bioreaktoren, Lafferty R. L. (ed.) Rothenburger Symp. Ferm. Technik, Braun, Melsungen 1978Google Scholar
  23. 23.
    Schuegerl, K.: Chem. Ing. Tech. 55 (2), 123 (1983)Google Scholar
  24. 24.
    Schuegerl, K., Luecke, J., Oels, U.: Adv. Biochem. Eng. 7, 1 (1977)Google Scholar
  25. 25.
    Schuegerl, K., Luecke, J., Lehmann, J., Wagner, F.: Adv. Biochem. Eng. 8, 63 (1978)Google Scholar
  26. 26.
    Blenke, H.: Adv. Biochem. Eng. 13, 121 (1979)Google Scholar
  27. 27.
    Fiechter, A.: Chem. Ing. Techn. 34 (10), 692 (1962)Google Scholar
  28. 28.
    Einsele, A., Fiechter, A.: Path. E. Microbiol. (Basel) 34, 149 (1969)Google Scholar
  29. 29.
    Karrer, D.: Der total gefuellte Bioreaktor. Diss. ETH Nr. 6254, Zurich 1978Google Scholar
  30. 30.
    Laederach, H. E.: Ueber fluiddynamische Untersuchungen im Torusbioreaktor. Diss. ETH Nr. 6410, Zurich 1979Google Scholar
  31. 31.
    Herzog, P.: Fluiddynamik und Waermeaustausch Newtonscher und nicht-Newtonscher Gas-Fluessigdispersionen im Torus bioreaktor. Diss. ETH Nr. 7137 Zurich 1982Google Scholar
  32. 32.
    Einsele, A.: Dechema Monographien 157, 1978Google Scholar
  33. 33.
    Wang, D. I. C., Humphrey, A. E.: Chem. Eng. 26, 108 (1969)Google Scholar
  34. 34.
    Monod, J.: Recherche sur la Croissance des Cultures Bacteriennes. Hermann, Paris 1940Google Scholar
  35. 35.
    Pirt, S. J.: Principles of Microbe and Cell Cultivation, London 1975Google Scholar
  36. 36.
    Janshekar, H.: Studies on Continuous Production of Fodder Yeast from Molasses, Diss. ETH Nr. 6402, Zurich 1979Google Scholar
  37. 37.
    Kaetterer, L.: Wachstumskinetische Untersuchungen an Hefepopulationen von Candida tropicalis und Trichosporon cutaneum. Diss. ETH Nr. 7172, Zurich 1982Google Scholar
  38. 38.
    Adler, I., Fiechter, A.: Chem. Ing. Techn. 4, 322 (1983)Google Scholar
  39. 39.
    Heer, B., Braendli, E., Fiechter, A.: Regulation of Molatdehydrogenase Isoenzyme in the Glucose-sensitive Yeast Schizosaccharomyces pombe. 5th Int. Ferm. Symp. Berlin 1976Google Scholar
  40. 40.
    Braendli, E.: Untersuchung zur Regulation und Funktion der Malat-Dehydrogenase in Schizosaccharomyces pombe. Diss. ETH Nr. 6549, Zurich 1980Google Scholar
  41. 41.
    Dostalek, M. et al.: Fermentation Technology Today, in: Proc. Int. Fermentation Symp. (Terui, G. ed.) Japan: Soc. Ferment. Technol. 1972Google Scholar
  42. 42.
    Haeggstroem, L.: Appl. Environ. Microbial. 33, 567 (1977)Google Scholar
  43. 43.
    Mateles, R. I., Battat, E.: Appl. Microbiol. 28, 901 (1974)Google Scholar
  44. 44.
    Kuhn, H. et al.: Europ. J. Appl. Microbiol. Technol. 6, 341 (1974)Google Scholar
  45. 45.
    Goldberg, I., Er-el, Z.: Process Biochemistry 16, 2 (1981)Google Scholar
  46. 46.
    Mateles, R. J.: Biotech. Bioeng. 13, 581 (1971)Google Scholar
  47. 47.
    Abbott, B. J., Clamen, A.: Biotech. Bioeng. 15, 117 (1973)Google Scholar
  48. 48.
    Koser, S. A.: Vitamin Requirements of Bacteria and Yeasts. Springfield 1980Google Scholar
  49. 49.
    Suomalainen, H., Oura, E.: Yeast Nutrition and Solute Uptake, in: The Yeasts (Rose, A. H., Harrison, J. S. eds.), p. 3. London 1971Google Scholar
  50. 50.
    Praeve, P., Faust, U., Sittig, W., Sukatsch, D. A.: Handbuch der Biotechnologie. Wiesbaden 1982Google Scholar
  51. 51.
    Hutner, S. H.: Ann. Rev. Microbiol. 26, 313, 1972Google Scholar
  52. 52.
    Clark, D., Meyer, H.-P., Leist, C., Fiechter, A.: in preparation 1984 Reiling, A., Laurila, H., Fiechter, A.: in preparation 1984Google Scholar
  53. 53.
    Rieger, M.: Untersuchung zur Regulation von Glykolyse und Atmung in Saccharomyces cerevisiae. Diss. ETH Nr. 7264, Zurich 1983Google Scholar
  54. 54.
    Puhar, E., Karrer, D., Einsele, A., Fiechter, A.: 1st Europ. Congr. on Biotechn. Part 2, p. 83, Interlaken 1978Google Scholar
  55. 55.
    Buchholz, H., Luttmann, R., Zakrzewski, W., Schuegerl, K.: Europ. J. Appl. Microb. Biotech. 12, 63 (1981)Google Scholar
  56. 56.
    Fiechter, A.: Untersuchungen an wachsenden Zellen von Saccharomyces cerevisiae. Habilitationsschrift ETH, Zurich 1966Google Scholar
  57. 57.
    Einsele, A., Fiechter, A.: 3rd Symp. Technische Microbiologie (Dellweg, H. ed.), p. 41, Berlin 1973Google Scholar
  58. 58.
    Karrer, D., Puhar, E., Fiechter, A.: 1st Europ. Congr. on Biotechn. Part 1, p. 23, Interlaken 1978Google Scholar
  59. 59.
    Fiechter, A.: Dechema Monographien. Biotechnology. Proc. 1st Europ. Congress on Biotechn. Survey Lectures Bd. 82, p. 17, 1978Google Scholar
  60. 60.
    Einsele, A., Karrer, D.: Europ. J. Appl. Microb. Biotechn. 9, 83, 1980Google Scholar
  61. 61.
    Mueller, H.: Chem. Anlagen Verfahren, Nr. 8, 41, 1971Google Scholar
  62. 62.
    Wania, H., Reuss, M., Wagner, F.: 3rd Symp. Technische Mikrobiologie (Dellweg, H. ed.) p. 41, 1973Google Scholar
  63. 63.
    Keitel, G.: Thesis, Univ. Dortmund 1978Google Scholar
  64. 64.
    Koenig, B.: Thesis, Univ. Hannover 1980Google Scholar
  65. 65.
    Seipenbusch, R., Blenke, H.: Adv. Biochem. Eng. 15, 1, 1980Google Scholar
  66. 66.
    Sittig, W., Heine, H.: Chem. Ing. Tech. 49, 595, 1977Google Scholar
  67. 67.
    Faust, U., Sittig, W.: Adv. Biochem. Eng. 17, 63, 1980Google Scholar
  68. 68.
    Laederach, H., Widmer, F., Einsele, A.: Proc. 1st Europ. Congr. on Biotechn. Part I, p. 84, Interlaken 1978Google Scholar
  69. 69.
    Ault, R. G.: Proc. 10th Congr. Europ. Brew. Convention Stockholm, p. 238, Elsevier, Amsterdam 1965Google Scholar
  70. 70.
    Luecke, J., Oels, U., Schuegerl, K.: Chem. Ing. Techn. 48, 573, 1976Google Scholar
  71. 71.
    Luecke, J., Oels, U., Schuegerl, K.: Chem. Ing. Techn. 49, 161, 1977Google Scholar
  72. 72.
    Schuegerl, K.: Chem. Ing. Techn. 49, 605, 1977Google Scholar
  73. 73.
    Burhholz, H., Buchholz, R., Niebeschuetz, H., Schuegerl, K.: Europ. J. Appl. Microb. Biotech. 6, 115, 1978Google Scholar
  74. 74.
    Buchholz, R., Adler, I., Schuegerl, K.: Europ. J. Appl. Microb. Biotech. 7, 135, 1979; 7, 241, 1979; 7, 333, 1979Google Scholar
  75. 75.
    Steel, R., Miller, T. L.: Adv. Appl. Microb. 12, 153, 1970Google Scholar
  76. 76.
    Zlokarnik, M.: Ruehrtechnik. Ullmanns Encyklopaedie der Techn. Chemie Vol. 2., 4th Ed., Verlag Chemie Weinheim 1972Google Scholar
  77. 77.
    Knoepfel, H.-P.: Zum Crabtree-Effekt bei Saccharomyces cerevisiae und Candida tropicalis. Diss. ETH Nr. 4906, Zurich 1972Google Scholar
  78. 78.
    Hassan, I. T. M., Robinson, C. W.: Canad. J. Chem. Engin. 58, 198 (1980)Google Scholar
  79. 79.
    Botton, R., Cosserat, D., Charpentier, J. C.: Chem. Eng. Sci. 35, 82 (1980)Google Scholar
  80. 80.
    Zlokarnik, M.: Adv. Biochem. Eng. 8, 133 (1978)Google Scholar
  81. 81.
    Adler, I., Schuegerl, K.: Biotech. Bioeng. 25, 417 (1983)Google Scholar
  82. 82.
    Margaritis, A., Sheppard, J. D.: Biotech. Bioeng. 23, 2117 (1981)Google Scholar
  83. 83.
    Serieys, M., Goma, G., Durand, G.: Biotech. Bioeng. 20, 1393 (1978)Google Scholar
  84. 84.
    Einsele, A., Finn, R. K.: I and EC Proc. Des. Dev. 19, 600 (1980)Google Scholar
  85. 85.
    Hunt, G., Reismann, H. B., Lago, J.: Chem. Eng. Prog. Symp. Ser. 67, 108 (1970)Google Scholar
  86. 86.
    Gleiser, I. E., Bauer, S.: Biotech. Bioeng. 23, 1015 (1981)Google Scholar
  87. 87.
    Esener, A. A., Roels, J. A., Kossen, N. W. F.: Biotech. Bioeng. 23, 1851 (1981)Google Scholar
  88. 88.
    Huang, S. Y., Chu, W. B.: Biotech. Bioeng. 23, 1491 (1981)Google Scholar
  89. 89.
    White, J.: Yeast Technology, London 1954Google Scholar
  90. 90.
    Sperber, E.: Arkiv Kemi Mineral. Geol. 21, A Nr. 3, 1945Google Scholar
  91. 91.
    Dostalek, M., Munk, V., Volfova, O., Fenzl, Z.: Biotech. Bioeng. 10, 865 (1968)Google Scholar
  92. 92.
    Klug, M. J., Markowetz, A. S.: Biotech. Bioeng. 11, 427 (1969)Google Scholar
  93. 93.
    Imada, Y., Yamada, K.: Agr. Biol. Chem. 35, 18 (1971)Google Scholar
  94. 94.
    Moo-Young, M., Shimizu, T., Whitworth, D. A.: Biotech. Bioeng. 13, 741 (1971)Google Scholar
  95. 95.
    Yoshida, F., Yamane, T., Yagi, H.: Biotech. Bioeng. 13, 473 (1971)Google Scholar
  96. 96.
    Goma, G., Pareilleux, A., Durand, G.: Arch. Microbiol. 88, 97 (1973)Google Scholar
  97. 97.
    Hug, H., Blanch, H. W., Fiechter, A.: Biotech. Bioeng. 16, 965 (1974)Google Scholar
  98. 98.
    Velankar, S. K., Barnett, S. M., Houston, C. W., Thomson, A. R.: Biotech. Bioeng. 17, 24 (1975)Google Scholar
  99. 99.
    Shafovostona, L. D., Pavlasova, E., Steiskalov, E., Masnerova, E., Begal, V., Slhabanova-Nechichova, J. S.: Mikrobiologija 44, 5, 863 (1976)Google Scholar
  100. 100.
    Shiloach, J., Bauer, S.: Biotech. Bioeng. 17, 227 (1975)Google Scholar
  101. 101.
    Monod, J., Cohen-Bazier, G., Cohn, M.: BBA 7, 4, 585 (1951)Google Scholar
  102. 102.
    Landwall, P., Holme, T.: J. Gen. Microbiol. 103, 345 (1977)Google Scholar
  103. 103.
    Kovac, L., Berta, F., Psenak, M., Slezaritova, V.: Folia Microbiol. 11 (4), 263 (1966)Google Scholar
  104. 104.
    Aiba, S., Nagai, S., Nishizawa, Y.: Biotech. Bioeng. 18, 1001 (1976)Google Scholar
  105. 105.
    Slezak, J., Sikyta, B.: Folia Microbiol. 12 (5), 441 (1967)Google Scholar
  106. 106.
    Shebata, T. E., Marr, A. G.: J. Bacteriol. 107, 210 (1971)Google Scholar
  107. 107.
    Matny, T. S., Sail, J. C.: J. Bacteriol. 92 (4), 960 (1966)Google Scholar
  108. 108.
    Kitai, A., Yamagata, T.: Process Biochem. 5, 11 (1970)Google Scholar
  109. 109.
    Mori, H., Yano, T., Kobayashi, T., Shimizu, S.: J. Chem. Eng. Jap. 12 (4), 313 (1979)Google Scholar
  110. 110.
    Yano, T. et al.: J. Ferm. Techn. 58, 259 (1980)Google Scholar
  111. 111.
    Harvey, R. J.: J. Bacteriol. 104, 698 (1970)Google Scholar
  112. 112.
    Clark, D. J., Maaloe, O.: J. Mol. Biol. 23, 99 (1967)Google Scholar
  113. 113.
    Herbert, D., Elsworth, R., Telling, R. C.: J. Gen. Microb. 14, 601 (1956)Google Scholar
  114. 114.
    Altman, P. L., Dittmer, D. S.: Biological Handbook. Washington 1968Google Scholar
  115. 115.
    Swings, J., De Ley, J.: Bact. Rev. 41, 1 (1977)Google Scholar
  116. 116.
    Dykhuizen, D. E., Hartl, D. L.: Microb. Rev. 47, 150 (1983)Google Scholar
  117. 117.
    Hoefle, M. G.: Appl. Environ. Microb. 46, 1045 (1983)Google Scholar
  118. 118.
    Aiba, S., Imanaka, T., Tsunekawa, H.: Biotechnol. Lett. 2 (12), 525 (1981)Google Scholar
  119. 119.
    Reese, E. T. et al.: J. Bact. 59, 485 (1950)Google Scholar
  120. 120.
    Erickson, K. E. et al.: Biotech. Bioeng. 17, 327 (1975)Google Scholar
  121. 121.
    Janshekar, H. et al.: Arch. Microbiol. 132, 14 (1982)Google Scholar
  122. 122.
    Toyama, N., Ogawa, K.: Proc. Symp. Bioconv. Cellulosic Subst. IIT Delhi, p. 305 (1978)Google Scholar
  123. 123.
    Perlozar, M. J. et al.: Arch. Biochem. 25, 449 (1950)Google Scholar
  124. 124.
    Chahal, D. S. et al.: Dev. Ind. Microbiol. 18, 433 (1977)Google Scholar
  125. 125.
    Herzog, P., Gschwend, K., Widmer, F., Fiechter, A.: Chem.-Ing. Tech. 55, 566 (1983)Google Scholar
  126. 126.
    Schuegerl, K.: Adv. Biochem. Eng. 22, 94 (1982)Google Scholar
  127. 127.
    Zabriskie, D. W., Armiger, W. B., Phillips, D. H., Albano, P. A.: Traders Guide to Fermentation Media Formulation. Traders Protein Division of Traders Oil Mill, Fort Worth 1980Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Armin Fiechter
    • 1
  1. 1.Department of BiotechnologySwiss Federal Institute of TechnologyZürich

Personalised recommendations