Skip to main content

Physical and chemical parameters of microbial growth

  • Conference paper
  • First Online:
Bioprocess Parameter Control

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 30))

Abstract

The observable behavior of a living cell in submerged culture results from the nature of underlying genetic information and its expression. Any expression of the genes is a matter of enzyme activity, which in turn is influenced by numerous factors of metabolic control mechanisms. Besides intracellularly located parameters, environmental factors also play an important role in the actual performance of microbes during growth.

The present review deals with those parameters that act on growth due to mechanisms working outside of the cell such as medium components and the methods which make them available for uptake. The numerous environmental effects can best be divided in the two categories of physical and chemical parameters.

The first category includes temperature, pressure, and the physical nature of the reaction mixture, including the problems of mixing and aeration. Emphasis is therefore given to the configuration of physical containments used in a bioprocess. The ultimate goal of any containment is the supply of nutrients to and the removal of metabolic products from the cell and the maintenance of a uniform distribution of the liquid, gaseous, and solid phases involved in the reaction mixture. Some data are also given on new principles for agitation and aeration. The advantages and drawbacks of the classical stirred tank and the air lift reactor are mentioned and these reactors are compared to three different loop forms used in research and partly in production plants. The tendency to further develop loop forms is becoming apparent, as these allow much better control of the flow pattern, irrespective of the viscosity, the uniform distribution of components, and an optimal supply of nutrients.

The second category of extracellular parameters includes the effects of medium containing substrate, nutrients, growth factors and trace elements. The proper selection of these components and their quantities is of great importance due to their potential effects on the metabolic performance of the cell. Continuous culture methods are shown to be of high efficiency for the fast identification of these effects, and a systematic concept for medium design is developed. Such a concept can replace the troublesome and arduous medium ‘optimization’ work based on trial and error. It allows for an exact evaluation of regulatory patterns at various growth rates and is therefore most suitable for metabolic studies and investigations of product formation.

The importance of medium designing and the development of appropriate hardware for growth is illustrated by some examples from studies using yeasts and bacteria. It is concluded that improved knowledge of the influence of physical and chemical parameters is prerequisite in any consistent work on metabolism and process development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C-limitation:

carbon limitation

C-limited:

carbon limited

D:

dilution rate (h−1)

Dc :

critical dilution rate (h−1)

DDC:

direct digital control

DR :

critical dilution rate for pure oxydative turnover (h−1)

kLa:

mass transfer coefficient (liquid film) (kmol m−3 s−1)

Ks :

saturation constant (mg l−1)

N:

revolution per minute

OTR:

oxygen transfer rate (mmol l−1 h−1)

OUR:

oxygen uptake rate (mmol l−1 h−1)

P/V:

power input (W l−1)

\(p_{o_2 }\) :

dissolved oxygen (bar)

\(q_{co_2 }\) :

specific rate of CO2 release (in moles g−1 h−1)

\(q_{o_2 }\) :

specific rate of O2 uptake (in moles g−1 h−1)

qp :

specific product formation rate (eg. g g−1 h−1)

qs :

specific uptake rate of substrate (mmoles l−1 h−1; g l−1 h−1)

RQ:

\(q_{co_2 } /q_{o_2 }\)

rx :

productivity (g g−1 h−1)

s:

substrate (g l−1)

s0 :

initial substrate concentration (g l−1)

SCP:

single cell protein

t:

time

T:

temperature

Μ:

specific growth rate (h−1)

Μmax :

maximal specific growth rate

x:

biomass (g l−1)

Y:

yield (−)

Ga:

Galilei number

Ne:

Newton number

Re:

Reynolds number

COLOR:

compact loop reactor

FBT:

flat blade turbine

JLR:

jet loop reactor

PLR:

propeller loop reactor

SLR:

short loop reactor

STR:

stirred tank reactor

TORUS:

annular configuration

TR:

tower form reactor

TLR:

tall loop reactor

References

  1. Finn, R. K.: Bacteriol. Rev. 18, 255 (1954)

    Google Scholar 

  2. Tsao, G.: Biotech. Bioeng. 12, 51 (1970)

    Google Scholar 

  3. Calderbank, B.: Biochem. and Biolog. Eng. Science (Blakebrough, N. ed.), New York: Academic Press 1967

    Google Scholar 

  4. Uhl, V. W., Gray, J. B. (eds.): Mixing Theory and Practice, New York: Academic Press 1967

    Google Scholar 

  5. Schuegerl, K.: Chem. Ing. Techn. 52 (12), 951 (1980)

    Google Scholar 

  6. Taguchi, H.: Adv. Biochem. Eng. 1, 1 (1971)

    Google Scholar 

  7. Brauer, H.: Adv. Biochem. Eng. 13, 87 (1979)

    Google Scholar 

  8. Yoshida, F.: Ind. Eng. Chem. 52, 435 (1960)

    Google Scholar 

  9. Cooper, C. M., Fernstrom, G. A., Miller, S. A.: Ind. Eng. Chem. 36, 504 (1944)

    Google Scholar 

  10. Calderbank, P. H.: Trans. Inst. Chem. Eng. 37, 173 (1959)Μ ibid 36, 443 (1958)

    Google Scholar 

  11. Zlokarnik, M.: Adv. Biochem. Eng. 11, 157 (1979)

    Google Scholar 

  12. Sinclair, C. G., Brown, D. E.: Biotech. Bioeng. 12, 1001 (1970)

    Google Scholar 

  13. Meier, C., Beyeler, W.: Biotech. Bioeng. (in press 1984)

    Google Scholar 

  14. Fan, L. T. et al.: Biotech. Bioeng. 12, 1019 (1970)

    Google Scholar 

  15. Charles, M.: Adv. Biochem. Eng. 8, 1 (1978)

    Google Scholar 

  16. Atkinson, B., Daoud, I. S.: Adv. Biochem. Eng. 4, 41 (1976)

    Google Scholar 

  17. Atkinson, B., Fowler, H. W.: Adv. Biochem. Eng. 3, 221 (1973)

    Google Scholar 

  18. Schumpe, A., Quicker, G., Deckwer, W.-D.: Adv. Biochem. Eng. 24, 1 (1982)

    Google Scholar 

  19. Swallow, B., Finn, R. K., Einsele, A.: Proc. 1st Europ. Congr. Biotech. Interlaken 1978

    Google Scholar 

  20. Gschwend, K. W.: Stofftransport in nicht-newtonschen Biosystemen. Diss. ETH Nr. 6975, Zurich 1982

    Google Scholar 

  21. Sittig, W., Heine, H.: Fortschritte der Verfahrenstechnik 14, 354 (1977); 11, 12 (1977)

    Google Scholar 

  22. Schuegerl, K.: Verwendung von Blasensaeulen als Bioreaktoren, Lafferty R. L. (ed.) Rothenburger Symp. Ferm. Technik, Braun, Melsungen 1978

    Google Scholar 

  23. Schuegerl, K.: Chem. Ing. Tech. 55 (2), 123 (1983)

    Google Scholar 

  24. Schuegerl, K., Luecke, J., Oels, U.: Adv. Biochem. Eng. 7, 1 (1977)

    Google Scholar 

  25. Schuegerl, K., Luecke, J., Lehmann, J., Wagner, F.: Adv. Biochem. Eng. 8, 63 (1978)

    Google Scholar 

  26. Blenke, H.: Adv. Biochem. Eng. 13, 121 (1979)

    Google Scholar 

  27. Fiechter, A.: Chem. Ing. Techn. 34 (10), 692 (1962)

    Google Scholar 

  28. Einsele, A., Fiechter, A.: Path. E. Microbiol. (Basel) 34, 149 (1969)

    Google Scholar 

  29. Karrer, D.: Der total gefuellte Bioreaktor. Diss. ETH Nr. 6254, Zurich 1978

    Google Scholar 

  30. Laederach, H. E.: Ueber fluiddynamische Untersuchungen im Torusbioreaktor. Diss. ETH Nr. 6410, Zurich 1979

    Google Scholar 

  31. Herzog, P.: Fluiddynamik und Waermeaustausch Newtonscher und nicht-Newtonscher Gas-Fluessigdispersionen im Torus bioreaktor. Diss. ETH Nr. 7137 Zurich 1982

    Google Scholar 

  32. Einsele, A.: Dechema Monographien 157, 1978

    Google Scholar 

  33. Wang, D. I. C., Humphrey, A. E.: Chem. Eng. 26, 108 (1969)

    Google Scholar 

  34. Monod, J.: Recherche sur la Croissance des Cultures Bacteriennes. Hermann, Paris 1940

    Google Scholar 

  35. Pirt, S. J.: Principles of Microbe and Cell Cultivation, London 1975

    Google Scholar 

  36. Janshekar, H.: Studies on Continuous Production of Fodder Yeast from Molasses, Diss. ETH Nr. 6402, Zurich 1979

    Google Scholar 

  37. Kaetterer, L.: Wachstumskinetische Untersuchungen an Hefepopulationen von Candida tropicalis und Trichosporon cutaneum. Diss. ETH Nr. 7172, Zurich 1982

    Google Scholar 

  38. Adler, I., Fiechter, A.: Chem. Ing. Techn. 4, 322 (1983)

    Google Scholar 

  39. Heer, B., Braendli, E., Fiechter, A.: Regulation of Molatdehydrogenase Isoenzyme in the Glucose-sensitive Yeast Schizosaccharomyces pombe. 5th Int. Ferm. Symp. Berlin 1976

    Google Scholar 

  40. Braendli, E.: Untersuchung zur Regulation und Funktion der Malat-Dehydrogenase in Schizosaccharomyces pombe. Diss. ETH Nr. 6549, Zurich 1980

    Google Scholar 

  41. Dostalek, M. et al.: Fermentation Technology Today, in: Proc. Int. Fermentation Symp. (Terui, G. ed.) Japan: Soc. Ferment. Technol. 1972

    Google Scholar 

  42. Haeggstroem, L.: Appl. Environ. Microbial. 33, 567 (1977)

    Google Scholar 

  43. Mateles, R. I., Battat, E.: Appl. Microbiol. 28, 901 (1974)

    Google Scholar 

  44. Kuhn, H. et al.: Europ. J. Appl. Microbiol. Technol. 6, 341 (1974)

    Google Scholar 

  45. Goldberg, I., Er-el, Z.: Process Biochemistry 16, 2 (1981)

    Google Scholar 

  46. Mateles, R. J.: Biotech. Bioeng. 13, 581 (1971)

    Google Scholar 

  47. Abbott, B. J., Clamen, A.: Biotech. Bioeng. 15, 117 (1973)

    Google Scholar 

  48. Koser, S. A.: Vitamin Requirements of Bacteria and Yeasts. Springfield 1980

    Google Scholar 

  49. Suomalainen, H., Oura, E.: Yeast Nutrition and Solute Uptake, in: The Yeasts (Rose, A. H., Harrison, J. S. eds.), p. 3. London 1971

    Google Scholar 

  50. Praeve, P., Faust, U., Sittig, W., Sukatsch, D. A.: Handbuch der Biotechnologie. Wiesbaden 1982

    Google Scholar 

  51. Hutner, S. H.: Ann. Rev. Microbiol. 26, 313, 1972

    Google Scholar 

  52. Clark, D., Meyer, H.-P., Leist, C., Fiechter, A.: in preparation 1984 Reiling, A., Laurila, H., Fiechter, A.: in preparation 1984

    Google Scholar 

  53. Rieger, M.: Untersuchung zur Regulation von Glykolyse und Atmung in Saccharomyces cerevisiae. Diss. ETH Nr. 7264, Zurich 1983

    Google Scholar 

  54. Puhar, E., Karrer, D., Einsele, A., Fiechter, A.: 1st Europ. Congr. on Biotechn. Part 2, p. 83, Interlaken 1978

    Google Scholar 

  55. Buchholz, H., Luttmann, R., Zakrzewski, W., Schuegerl, K.: Europ. J. Appl. Microb. Biotech. 12, 63 (1981)

    Google Scholar 

  56. Fiechter, A.: Untersuchungen an wachsenden Zellen von Saccharomyces cerevisiae. Habilitationsschrift ETH, Zurich 1966

    Google Scholar 

  57. Einsele, A., Fiechter, A.: 3rd Symp. Technische Microbiologie (Dellweg, H. ed.), p. 41, Berlin 1973

    Google Scholar 

  58. Karrer, D., Puhar, E., Fiechter, A.: 1st Europ. Congr. on Biotechn. Part 1, p. 23, Interlaken 1978

    Google Scholar 

  59. Fiechter, A.: Dechema Monographien. Biotechnology. Proc. 1st Europ. Congress on Biotechn. Survey Lectures Bd. 82, p. 17, 1978

    Google Scholar 

  60. Einsele, A., Karrer, D.: Europ. J. Appl. Microb. Biotechn. 9, 83, 1980

    Google Scholar 

  61. Mueller, H.: Chem. Anlagen Verfahren, Nr. 8, 41, 1971

    Google Scholar 

  62. Wania, H., Reuss, M., Wagner, F.: 3rd Symp. Technische Mikrobiologie (Dellweg, H. ed.) p. 41, 1973

    Google Scholar 

  63. Keitel, G.: Thesis, Univ. Dortmund 1978

    Google Scholar 

  64. Koenig, B.: Thesis, Univ. Hannover 1980

    Google Scholar 

  65. Seipenbusch, R., Blenke, H.: Adv. Biochem. Eng. 15, 1, 1980

    Google Scholar 

  66. Sittig, W., Heine, H.: Chem. Ing. Tech. 49, 595, 1977

    Google Scholar 

  67. Faust, U., Sittig, W.: Adv. Biochem. Eng. 17, 63, 1980

    Google Scholar 

  68. Laederach, H., Widmer, F., Einsele, A.: Proc. 1st Europ. Congr. on Biotechn. Part I, p. 84, Interlaken 1978

    Google Scholar 

  69. Ault, R. G.: Proc. 10th Congr. Europ. Brew. Convention Stockholm, p. 238, Elsevier, Amsterdam 1965

    Google Scholar 

  70. Luecke, J., Oels, U., Schuegerl, K.: Chem. Ing. Techn. 48, 573, 1976

    Google Scholar 

  71. Luecke, J., Oels, U., Schuegerl, K.: Chem. Ing. Techn. 49, 161, 1977

    Google Scholar 

  72. Schuegerl, K.: Chem. Ing. Techn. 49, 605, 1977

    Google Scholar 

  73. Burhholz, H., Buchholz, R., Niebeschuetz, H., Schuegerl, K.: Europ. J. Appl. Microb. Biotech. 6, 115, 1978

    Google Scholar 

  74. Buchholz, R., Adler, I., Schuegerl, K.: Europ. J. Appl. Microb. Biotech. 7, 135, 1979; 7, 241, 1979; 7, 333, 1979

    Google Scholar 

  75. Steel, R., Miller, T. L.: Adv. Appl. Microb. 12, 153, 1970

    Google Scholar 

  76. Zlokarnik, M.: Ruehrtechnik. Ullmanns Encyklopaedie der Techn. Chemie Vol. 2., 4th Ed., Verlag Chemie Weinheim 1972

    Google Scholar 

  77. Knoepfel, H.-P.: Zum Crabtree-Effekt bei Saccharomyces cerevisiae und Candida tropicalis. Diss. ETH Nr. 4906, Zurich 1972

    Google Scholar 

  78. Hassan, I. T. M., Robinson, C. W.: Canad. J. Chem. Engin. 58, 198 (1980)

    Google Scholar 

  79. Botton, R., Cosserat, D., Charpentier, J. C.: Chem. Eng. Sci. 35, 82 (1980)

    Google Scholar 

  80. Zlokarnik, M.: Adv. Biochem. Eng. 8, 133 (1978)

    Google Scholar 

  81. Adler, I., Schuegerl, K.: Biotech. Bioeng. 25, 417 (1983)

    Google Scholar 

  82. Margaritis, A., Sheppard, J. D.: Biotech. Bioeng. 23, 2117 (1981)

    Google Scholar 

  83. Serieys, M., Goma, G., Durand, G.: Biotech. Bioeng. 20, 1393 (1978)

    Google Scholar 

  84. Einsele, A., Finn, R. K.: I and EC Proc. Des. Dev. 19, 600 (1980)

    Google Scholar 

  85. Hunt, G., Reismann, H. B., Lago, J.: Chem. Eng. Prog. Symp. Ser. 67, 108 (1970)

    Google Scholar 

  86. Gleiser, I. E., Bauer, S.: Biotech. Bioeng. 23, 1015 (1981)

    Google Scholar 

  87. Esener, A. A., Roels, J. A., Kossen, N. W. F.: Biotech. Bioeng. 23, 1851 (1981)

    Google Scholar 

  88. Huang, S. Y., Chu, W. B.: Biotech. Bioeng. 23, 1491 (1981)

    Google Scholar 

  89. White, J.: Yeast Technology, London 1954

    Google Scholar 

  90. Sperber, E.: Arkiv Kemi Mineral. Geol. 21, A Nr. 3, 1945

    Google Scholar 

  91. Dostalek, M., Munk, V., Volfova, O., Fenzl, Z.: Biotech. Bioeng. 10, 865 (1968)

    Google Scholar 

  92. Klug, M. J., Markowetz, A. S.: Biotech. Bioeng. 11, 427 (1969)

    Google Scholar 

  93. Imada, Y., Yamada, K.: Agr. Biol. Chem. 35, 18 (1971)

    Google Scholar 

  94. Moo-Young, M., Shimizu, T., Whitworth, D. A.: Biotech. Bioeng. 13, 741 (1971)

    Google Scholar 

  95. Yoshida, F., Yamane, T., Yagi, H.: Biotech. Bioeng. 13, 473 (1971)

    Google Scholar 

  96. Goma, G., Pareilleux, A., Durand, G.: Arch. Microbiol. 88, 97 (1973)

    Google Scholar 

  97. Hug, H., Blanch, H. W., Fiechter, A.: Biotech. Bioeng. 16, 965 (1974)

    Google Scholar 

  98. Velankar, S. K., Barnett, S. M., Houston, C. W., Thomson, A. R.: Biotech. Bioeng. 17, 24 (1975)

    Google Scholar 

  99. Shafovostona, L. D., Pavlasova, E., Steiskalov, E., Masnerova, E., Begal, V., Slhabanova-Nechichova, J. S.: Mikrobiologija 44, 5, 863 (1976)

    Google Scholar 

  100. Shiloach, J., Bauer, S.: Biotech. Bioeng. 17, 227 (1975)

    Google Scholar 

  101. Monod, J., Cohen-Bazier, G., Cohn, M.: BBA 7, 4, 585 (1951)

    Google Scholar 

  102. Landwall, P., Holme, T.: J. Gen. Microbiol. 103, 345 (1977)

    Google Scholar 

  103. Kovac, L., Berta, F., Psenak, M., Slezaritova, V.: Folia Microbiol. 11 (4), 263 (1966)

    Google Scholar 

  104. Aiba, S., Nagai, S., Nishizawa, Y.: Biotech. Bioeng. 18, 1001 (1976)

    Google Scholar 

  105. Slezak, J., Sikyta, B.: Folia Microbiol. 12 (5), 441 (1967)

    Google Scholar 

  106. Shebata, T. E., Marr, A. G.: J. Bacteriol. 107, 210 (1971)

    Google Scholar 

  107. Matny, T. S., Sail, J. C.: J. Bacteriol. 92 (4), 960 (1966)

    Google Scholar 

  108. Kitai, A., Yamagata, T.: Process Biochem. 5, 11 (1970)

    Google Scholar 

  109. Mori, H., Yano, T., Kobayashi, T., Shimizu, S.: J. Chem. Eng. Jap. 12 (4), 313 (1979)

    Google Scholar 

  110. Yano, T. et al.: J. Ferm. Techn. 58, 259 (1980)

    Google Scholar 

  111. Harvey, R. J.: J. Bacteriol. 104, 698 (1970)

    Google Scholar 

  112. Clark, D. J., Maaloe, O.: J. Mol. Biol. 23, 99 (1967)

    Google Scholar 

  113. Herbert, D., Elsworth, R., Telling, R. C.: J. Gen. Microb. 14, 601 (1956)

    Google Scholar 

  114. Altman, P. L., Dittmer, D. S.: Biological Handbook. Washington 1968

    Google Scholar 

  115. Swings, J., De Ley, J.: Bact. Rev. 41, 1 (1977)

    Google Scholar 

  116. Dykhuizen, D. E., Hartl, D. L.: Microb. Rev. 47, 150 (1983)

    Google Scholar 

  117. Hoefle, M. G.: Appl. Environ. Microb. 46, 1045 (1983)

    Google Scholar 

  118. Aiba, S., Imanaka, T., Tsunekawa, H.: Biotechnol. Lett. 2 (12), 525 (1981)

    Google Scholar 

  119. Reese, E. T. et al.: J. Bact. 59, 485 (1950)

    Google Scholar 

  120. Erickson, K. E. et al.: Biotech. Bioeng. 17, 327 (1975)

    Google Scholar 

  121. Janshekar, H. et al.: Arch. Microbiol. 132, 14 (1982)

    Google Scholar 

  122. Toyama, N., Ogawa, K.: Proc. Symp. Bioconv. Cellulosic Subst. IIT Delhi, p. 305 (1978)

    Google Scholar 

  123. Perlozar, M. J. et al.: Arch. Biochem. 25, 449 (1950)

    Google Scholar 

  124. Chahal, D. S. et al.: Dev. Ind. Microbiol. 18, 433 (1977)

    Google Scholar 

  125. Herzog, P., Gschwend, K., Widmer, F., Fiechter, A.: Chem.-Ing. Tech. 55, 566 (1983)

    Google Scholar 

  126. Schuegerl, K.: Adv. Biochem. Eng. 22, 94 (1982)

    Google Scholar 

  127. Zabriskie, D. W., Armiger, W. B., Phillips, D. H., Albano, P. A.: Traders Guide to Fermentation Media Formulation. Traders Protein Division of Traders Oil Mill, Fort Worth 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Fiechter, A. (1984). Physical and chemical parameters of microbial growth. In: Bioprocess Parameter Control. Advances in Biochemical Engineering/Biotechnology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0006379

Download citation

  • DOI: https://doi.org/10.1007/BFb0006379

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13539-5

  • Online ISBN: 978-3-540-39004-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics