Advertisement

Linear-quadratic singular control: Algorithms

Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 5)

Keywords

Control Problem Optimal Control Problem Riccati Equation Optimal Cost Singular Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.E. Bryson and Y.C. Ho., Applied Optimal Control, Ginn and Co., Mass., 1969.Google Scholar
  2. [2]
    J.C. Willems, "Least squares stationary optimal control and the algebraic Riccati equation", IEEE Trans. Automatic Control, Vol. AC-16, December 1971, pp. 621–634.Google Scholar
  3. [3]
    J.B. Moore and B.D.O. Anderson, "Extensions of quadratic minimization theory: I. Finite time results", Int. J. Control, Vol. 7, 1968, pp. 465–472.Google Scholar
  4. [4]
    B.D.O. Anderson, J.B. Moore and S.G. Loo, "Spectral factorization of time-varying covariance functions", IEEE Trans. Information Theory, Vol. IT-15, 1969, pp. 550–557.Google Scholar
  5. [5]
    B.D.O. Anderson and P.J. Moylan, "Spectral factorization of a finite-dimensional nonstationary matrix covariance", IEEE Trans. Automatic Control, Vol. AC-19, 1974, pp. 680–692.Google Scholar
  6. [6]
    N. Krasner, "Semi-separable kernels in linear estimation and control", Report No. 7001-7, Information Systems Laboratory, Stanford, Calif., May 1974.Google Scholar
  7. [7]
    B.D.O. Anderson and P.J. Moylan, "Synthesis of linear time-varying passive networks", IEEE Trans. Circuits and Systems, Vol. CAS-21, 1974, pp. 678–687.Google Scholar
  8. [8]
    D.H. Jacobson, "Totally singular quadratic minimization problems", IEEE Trans. Automatic Control, Vol. AC-16, 1971, pp. 651–658.Google Scholar
  9. [9]
    D.J. Bell, "Singular problems in optimal control — a survey", Control Systems Centre Report, No. 249, University of Manchester Institute of Science and Technology, England, 1974.Google Scholar
  10. [10]
    D.J. Bell and D.H. Jacobson, Singular Optimal Control Problems, Academic Press, New York, 1975.Google Scholar
  11. [11]
    H.M. Robbins, "A generalized Legendre-Clebsch condition for the singular cases of optimal control", IBM J. Res. Develop., Vol. 3, 1967, pp. 372.Google Scholar
  12. [12]
    H.J. Kelley, "A second variation test for singular extremals", AIAA J., Vol. 2, 1964, pp. 1380–1382.Google Scholar
  13. [13]
    H.J. Kelley, R.E. Kopp and H.G. Moyer, "Singular extremals", in Topics in Optimization, G. Leitmann, Ed., Academic Press, New York 1967.Google Scholar
  14. [14]
    H.J. Kelley, "A transformation approach to singular subarcs in optimal trajectory and control problems", SIAM J. Control, Vol. 2, 1964, pp. 234–240.Google Scholar
  15. [15]
    B.S. Goh, "Necessary conditions for singular extremals involving multiple control variables", SIAM J. Control, Vol. 4, 1966, pp. 716–731.Google Scholar
  16. [16]
    B.S. Goh, "The second variation for the singular Bolza problem", SIAM J. Control, Vol. 4, 1966, pp. 309–325.Google Scholar
  17. [17]
    J.B. Moore, "The singular solutions to a singular quadratic minimization problem", Int. J. Control, Vol. 20, 1974, pp. 383–393.Google Scholar
  18. [18]
    J.L. Speyer and D.H. Jacobson, "Necessary and sufficient conditions for optimality for singular control problems; a transformation approach", J. Math. Anal. Appl., Vol. 33, 1971, pp. 163–187.Google Scholar
  19. [19]
    P.J. Moylan, "Preliminary simplifications in state-space impedance synthesis", IEEE Trans. Circuits and Systems, Vol. CAS-21, 1974, pp. 203–206.Google Scholar
  20. [20]
    R.E. O'Malley, Jr., and A. Jameson, "Singular perturbations and singular arcs — Part I", IEEE Trans. Automatic Control, Vol. AC-20, 1975, pp. 218–226.Google Scholar
  21. [21]
    Y.C. Ho, "Linear stochastic singular control problems", J. Opt. Theory and Appl., Vol. 9, 1972, pp. 24–31.Google Scholar
  22. [22]
    D.J. Clements, B.D.O. Anderson and P.J. Moylan, "Matrix inequality solution to linear-quadratic singular control problems", IEEE Trans. Automatic Control, Vol. AC-22, 1977, pp. 55–57.Google Scholar
  23. [23]
    D.J. Clements and B.D.O. Anderson, "Transformation solution of singular linear-quadratic control problems", IEEE Trans. Automatic Control, Vol. AC-22, 1977, pp. 57–60.Google Scholar
  24. [24]
    V. Dolezal, "The existence of a continuous basis of a certain linear subspace of Er which depends on a parameter", Cas. Pro. Pest. Mat., Vol. 89, 1964, pp. 466–468.Google Scholar
  25. [25]
    L. Weiss and P.L. Falb, "Dolezal's theorem, linear algebra with continuously parameterized elements and time-varying systems", Math. Syst. Theory, Vol. 3, 1969, pp. 67–75.Google Scholar
  26. [26]
    F.R. Gantmaker, Theory of Matrices, Chelsea Pub. Co., New York, 1959.Google Scholar
  27. [27]
    R. Courant and D. Hilbert, Methods of Mathematical Physics — Vol. II, Interscience Publishers Inc., New York, 1962.Google Scholar
  28. [28]
    M.G. Wood, J.B. Moore and B.D.O. Anderson, "Study of an integral equation arising in detection theory", IEEE Trans. Information Theory, Vol. IT-17, 1971, pp. 677–686.Google Scholar

Copyright information

© Springer-Verlag 1978

Personalised recommendations