Spectrally canonical distributed parameter systems

  • L. Pandolfi
Session 7 Distributed Parameter Systems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 62)


We consider the transfer function T(z) of a distributed parameter system. Under suitable assumptions, we study the relationships which occur between the structures of the poles and zeros of T(z) and the properties of the system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dolecki, S., A Classification of Controllability Concepts for Infinite Dimensional Linear Systems, Control and Cybernetics, "-44, 1976.Google Scholar
  2. 2.
    Dolecki, S., Russel, D.L., A General Theory of Observation and Control, SIAM J. Control Opt., 15, 185–220, 1977.Google Scholar
  3. 3.
    Bacciotti, A., Sedici modi di definire la completa controllabilità ne gli spazi di Banach, To appear: Rend. del Sem. Matem. Univ. Pol. TorinoGoogle Scholar
  4. 4.
    Bhat, K.P.M., Wonham, W.M., Stabilizability and Detectability for E-volution Systems in Banach Spaces, 1976 IEEE Conf. on Decision and Control.Google Scholar
  5. 5.
    Pandolfi, L., The transmission Zeros of Systems with Delays, International J. Control, 36, 959–976, 1982.Google Scholar
  6. 6.
    Pandolfi, L., Some Observations about the Structure of Systems with Delays, in "Analysis and Optimization of Systems" Bensoussan, A., Lions J.L. Ed., Lecture Notes in Control and Inf. Sci. 44, Springer Verlag, Berlin, 1982.Google Scholar
  7. 7.
    Pandolfi, L., Canonical Realizations of Systems with Delays, SIAM J. Control Opt., 21, 598–613, 1983.Google Scholar
  8. 8.
    Fuhran, P.A., Linear Systems and Operators in Hilbert Spaces, Mc Grow Hill International Book Co., New York, 1981Google Scholar
  9. 9.
    Pojolainen, S., Computation of Transmission Zeros for Distributed Parameter Systems, Int. J. Control, 33, 199–212, 1981.Google Scholar
  10. 10.
    Helton, J.W., Systems with Infinite Dimensional State Space: a Hilbert Space approach, Proc. of the IEEE, 64, 145–160, 1976.Google Scholar
  11. 11.
    Benchimol, C.D., A Note on Weak Stabilizability of Contraction Semigroups, SIAM J. Control Opt., 16, 373–379, 1978.Google Scholar
  12. 12.
    Zabczyk, J., Complete Stabilizability Implies Exact Controllability, Seminarul de Ecuatii Functionale, Univ. din Timishoara, 38, 1–8, 1976.Google Scholar
  13. 13.
    Taylor, A., Introduction to Functional Analysis, Chapman & Hall, Ltd, London, 1958.Google Scholar
  14. 14.
    Callier, F.M., Cheng, V.H.L., Desoer, C.A., Dynamic Interpretation of Poles and Transmission Zeros for Distributed Multivariable Systems, IEEE Trans. Cyrcuit and Systems, CAS-28, 300–306, 1981.Google Scholar
  15. 15.
    Przyłuski, K.M., Zeros of Linear Distributed Parameter Systems with application to the theory of Delay Systems, Technical Report, Institute of Electronics Fundamentals, Warsaw Technical University, Warsaw, 1979.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • L. Pandolfi
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di TorinoTorinoItalia

Personalised recommendations