On the finite element approximation of the boundary control for two-phase stefan problems

  • P. Neittaanmäki
  • D. Tiba
Session 7 Distributed Parameter Systems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 62)


A boundary control for a two-phase Stefan problem is considered. The problem is regularized by utilizing the Yosida approximation and the Friedrichs mollifier. Next it is discretized by finite elements in space and finite differences in time. The solution of these auxiliary problems are shown to be minimizing sequences for the original problem when certain parameters approach to zero. A gradient algorithm is presented for the discretized problem. Numerical test example illustrates the efficiency of the methods.


Variational Inequality Boundary Control Gradient Algorithm Maximal Monotone Operator Finite Element Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Arnautu: Approximation of optimal distributed control problems governed by variational inequalities, Numer. Math., 38, 1982, 393–416Google Scholar
  2. [2]
    J.P. Aubin: Un théorème de compacite, C.R.A.S., Paris, 256, 1963Google Scholar
  3. [3]
    V. Barbu: Necessary conditions for distributed control problems governed by parabolic variational inequalities, SIAM, J. Control Optim. 19, 1981, 64–86Google Scholar
  4. [4]
    V. Barbu: Boundary control problems with nonlinear state equation, SIAM, J. Control Optim. 20, 1982, 125–143Google Scholar
  5. [5]
    F. Bonnans: Application de methodes lagrangiennes en controle, analyse et controle de systèmes distributes semi-lineares instables, These, Univ. de Technologie de Compiègne, 1982Google Scholar
  6. [6]
    J. Cea: Optimization — Theory and Algorithms, Tata Institute of Fundamental Research, Springer, Bombay, 1978Google Scholar
  7. [7]
    P.G. Ciarlet: The finite element method for elliptic problems. North Holland Publishing Company, Amsterdam, 1978Google Scholar
  8. [8]
    J.F. Ciavaldini: Analyse numérique d'un problème de Stefan á deux phases par une méthode d'elements finis. SIAM J. Numer. Anal. 12, 1975, 464–487Google Scholar
  9. [9]
    G. Duvaut: The solution of a two-phase Stefan problem by variational inequality, Proc. Symposium on moving boundary problems in heat flow and diffusion, J.R. Ockendon-W.R. Hodgkins (ed.), Clarendon Press, Oxford, 1975, 173–181Google Scholar
  10. [10]
    C.M. Elliot: On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem, IMA J. Numer. Anal., 1, 1981, 115–125Google Scholar
  11. [11]
    C.M. Elliot and J.R. Ockendon: Weak and variational methods for moving boundary problems. Research Notes in Mathematics 59, Pitman, Boston, 1982Google Scholar
  12. [12]
    M. Fremond: Diffusion problems with free boundaries, Autumn Course on Applications of Analysis to Mechanics, I.C.T.P. Trieste, 1976Google Scholar
  13. [13]
    R. Glowinski, J.L. Lions and R. Tremolières: Numerical analysis of variational inequalities, Studies in Mathematics and its Applications 8. North Holland, Amsterdam, 1981Google Scholar
  14. [14]
    O. Grange and F. Mignot: Sur la résolution d'une équation et d'une inéquation paraboliques non lineares, J. Funct. Anal., 11, 1972, 77–93Google Scholar
  15. [15]
    K.-H. Hoffmann and M. Niezgodka: Control of parabolic systems involving free boundaries, in Free Boundary Problems — Theory and Applications (ed. by A. Fasano and M. Primicerio) Research Notes in Mathematics, 79, Pitman, Boston, 1983, 431–462Google Scholar
  16. [16]
    J.W. Jerome and M.E. Rose: Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39, 1982, 377–414Google Scholar
  17. [17]
    C. Lemaréchal, J.J. Strodiot and A. Bihain: On a bundle algorithm for nonsmooth obtimization, in Nonlinear Programming 4, Academic Press, New York, 1981, 245–281Google Scholar
  18. [18]
    J.L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969Google Scholar
  19. [19]
    Z. Meike and D. Tiba: Optimal control for a Stefan problem, in Analysis and Optimization of Systems (ed. by A. Bensoussan and J.L. Lions), Lecture Notes in Control and Information Sciences 44, Springer-Verlag, Berlin, 1982, 776–787Google Scholar
  20. [20]
    P. Neittaanmäki and D. Tiba: A descent method for the boundary control of a two-phase Stefan problem, in Proc. of the 3nd Int. Workshop on Control Theory and Differential Equations, Buckarest, August 26–30, 1983, INCREST, 1983, 111–127Google Scholar
  21. [21]
    P. Neittaanmäki and D. Tiba: A finite element approximation of the boundary control of two-phase Stefan problems, Lappeenranta University of Technology, Dept. Physics and Mathematics, Research Report 3/83, 1983Google Scholar
  22. [22]
    I. Pawlow: A variational inequality approach to generalized two-phase Stefan problem in several space variables, Ann. Mat. Pura Appl., vol. CXXXI, 1982, 333–373Google Scholar
  23. [23]
    I. Pawlow: Error estimates for Galerkin approximation of boundary control problems for two-phase Stefan type processes, see [20], 129–147Google Scholar
  24. [24]
    O. Pironneau: Optimal shape design for elliptic systems, Lecture Notes in Comp. Physics, Springer Verlag, New York, 1983Google Scholar
  25. [25]
    L. Rubinstein: The Stefan problem, Transl. Math. Monographs, Vol. 27, Amer. Math. Soc., Providence, R.I., 1971Google Scholar
  26. [26]
    C. Saguez: Contrôle optimal de systèmes à frontière libre, Thèse, Univ. Technologique Compiegne, 1980Google Scholar
  27. [27]
    D.A. Tarzia: Etude de l'inèquation variationelle proposée par Duvaut pour le problème de Stefan á deux phases I, Boll U.M.I. 6, 1982, 865–883Google Scholar
  28. [28]
    D. Tiba: Boundary control for a Stefan problem, in Optimale Kontrolle partieller Differentialgleichungen mit Schwerpunkt auf numerischen Verfahren, (ed. by K.-H. Hoffmann and W. Krabs), ISNM, Birkhauser, Basel, 1983Google Scholar
  29. [29]
    D. Tiba and M. Tiba: Regularity of the boundary data and the finite element discretization in two-phase Stefan problems, Int. J. Eng. Sciences (submitted) also available as INCREST preprint, no 41, 1983.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • P. Neittaanmäki
    • 1
  • D. Tiba
    • 2
  1. 1.Department of Physics and MathematicsLappeenranta University of TechnologyLappeenranta 85Finland
  2. 2.Department of MathematicsINCRESTBucurestiRomania

Personalised recommendations