Advertisement

Poursuite de modele a entree bornee

  • J. M. Dion
  • C. Commault
Session 6 Linear Systems I
  • 122 Downloads
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 62)

Resume

Dans cet article on étudie l'équation AX=B où A et B sont des matrices sur le corps des fractions rationnelles. On s'intéressera aux solutions X à éléments appartenant à des anneaux particuliers tels que l'anneau des fractions rationnelles propres stables. La solution obtenue généralise les résultats connus où A, X et B appartiennent au même corps ou au même anneau. Quelques applications à divers problèmes de commande sont présentées. On s'intéressera plus particulièrement à la poursuite de modèle à entrée bornée.

Keywords

Pole Assignment Cascade Control Generalize Dynamical System Transfer Matrix Approach Linear Multivariable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.H. WANG and E.J. DAVISON. "A minimization algorithm for the design of linear multivariable systems". I.E.E.E. T.A.C. A.C-18, pp. 220–225, 1973.Google Scholar
  2. [2]
    G.D. FORNEY, Jr. "Minimal bases of rational vector spaces with applications to multivariable linear systems". SIAM J. on Control, 13, pp. 493–520. 1975.Google Scholar
  3. [3]
    S. KUNG and T. KAILATH. "Some notes on valuation theory in linear systems" Proc. I.E.E.E. C.D.C. San Diego 1978. pp. 515–517.Google Scholar
  4. [4]
    A.S. MORSE. "System invariants under feedback and cascade control". Proc. Int. Symp. Udine Springer Verlag. 1975.Google Scholar
  5. [5]
    G. VERGHESE. "Infinite frequency behaviour in generalized dynamical systems" Ph.D. dissertation, Dept. of Elect. Engg. Stanford University. 1978.Google Scholar
  6. [6]
    L. PERNEBO. "Algebraic control theory for linear multivariable systems. Ph.D. dissertation. Lund Institute of Technology Sweden, 1978.Google Scholar
  7. [7]
    W.A. WOLOWICH and P.L. FALB. "Invariants and canonical forms under dynamic compensation" SIAM J. on Control, 14, pp. 996–1008, 1976.Google Scholar
  8. [8]
    M. MALABRE. "Structure à l'infini des triplets invariants, application à la poursuite parfaite de modèle" 5ème Conf. Int. Analysis and Opt. of Systems. INRIA. Springer-Verlag. 1982.Google Scholar
  9. [9]
    B. FRANCIS. "Convergence in the boundary layer for singularly perturbed equations" Automatica, 18, pp. 57–62, 1982.Google Scholar
  10. [10]
    H.H. ROSENBROCK. "State space and multivariable theory". Nelson Wiley. 1970.Google Scholar
  11. [11]
    M. MARCUS. "Introduction to modern algebra". Marcel Dekker. New York. 1978.Google Scholar
  12. [12]
    W.M. WONHAM and A.S. MORSE. "Decoupling and pole assignment in linear multivariable systems: a geometric approach". SIAM J. on Control, 8, pp. 1–18, 1970.Google Scholar
  13. [13]
    M.L.J. HAUTUS. "(A,B)-invariant and stabilizability subspaces, a frequency domain description" Automatica, 16, pp. 703–707, 1980.Google Scholar
  14. [14]
    BHATTACHARYYA, A.C. del NERO GOMES and J.W. HOWZE. "The structure of robust disturbance rejection control". I.E.E.E. T.A.C. AC-28, pp. 874–881, 1983.Google Scholar
  15. [15]
    J.C. WILLEMS. "Almost invariant subspaces: An approach to high gain feedback design. Part.II: Almost conditionally invariant subspaces". I.E.E.E. T.A.C., AC-27, pp. 1071–1096. 1982.Google Scholar
  16. [16]
    C. COMMAULT, J.M. DION and S. PEREZ. "Transfer matrix approach to the disturbance decoupling problem". I.F.A.C. Congress — Budapest — July 1984.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. M. Dion
    • 1
  • C. Commault
    • 1
  1. 1.Laboratoire d'Automatique de GrenobleE.N.S.I.E.G. — I.N.P.G.Saint-Martin-D'Heres

Personalised recommendations