Skip to main content

Performance comparison of two segmentation algorithms using growing reference windows

  • Session 4 Detection Of Changes In Systems
  • Conference paper
  • First Online:
Book cover Analysis and Optimization of Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 62))

Abstract

Two procedures designed for the detection of parameter jumps in autoregressive gaussian distributed processes — the generalized likelihood ratio (GLR) algorithm and the cumulated sum (CUSUM) algorithm — are compared regarding their performance. Both algorithms share as a common feature a growing reference window and a sliding fixed length test window, but use different detection statistics. Some rough features of the algorithms are deducted using means instead of the stochastic signal itself. More detailed results are then obtained from extensive simulations performed with different types of parameter jumps in the test signals. As a general result, it is shown that the CUSUM procedure may perform slightly better with respect to the detection of spurious jumps, if direction and distance of the jump is known in advance. On the other hand, the GLR algorithm leads to much better results in the detection and particularly the positioning of jumps succeeding each other in a short time interval (“short segments”). Moreover, the GLR algorithm is more robust considering the application of a segmentation procedure under realistic assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. v.Brandt, "On-line Segmentation of Time Series Using a Pilot Segment", Proc. Int. Conf. on Digital Signal Processing, Florence, 1981, pp. 1111–1118

    Google Scholar 

  2. U. Appel, A. v. Brandt, "Adaptive Sequential Segmentation of Piecewise Stationary Time Series", Information Sciences 29, 1983, pp. 27–56

    Google Scholar 

  3. G. Bodenstein and H.M. Praetorius, "Feature extraction from the electroencephalogram by adaptive segmentation", Proc. IEEE, vol.65, no. 5, May 1977, pp. 642–652

    Google Scholar 

  4. B.H. Jansen, A. Hasman and R. Lenten, "Piecewise analysis of EEGs using AR-modeling and clustering", Computers and biomed. Res. 14, 1981, pp. 168–178

    Google Scholar 

  5. D. Michael and J. Houchin, "Automatic EEG analysis: A segmentation procedure based on the autocorrelation function", Electroenceph. clin. Neurophysiol., vol. 46, 1979, pp. 232–235

    Google Scholar 

  6. J.S. Barlow, O.D. Creutzfeld, D. Michael, J. Houchin and H. Epelbaum, "Automatic adaptive segmentation of clinical EEGs", Electroenceph. clin. Neurophysiol., 1981, vol. 51, pp. 512–525

    Google Scholar 

  7. J. Rissanen, "Modelling by shortest data description", Automatica, vol. 14, 1978, pp. 465–471

    Google Scholar 

  8. A.C. Sanderson, J. Segen and E. Richey, "Hierarchical modeling of EEG signals", IEEE Trans. Pattern Analysis, Machine Int., vol. PAMI-2, no. 5, Sept. 1980, pp. 405–415

    Google Scholar 

  9. M. Basseville, A. Benveniste, "Sequential Detection of Abrupt Changes in Spectral Characteristics of Digital Signals", IEEE Trans. Inf. Theory, Sept. 1983; (see also: Research Report no. 129, INRIA, Centre de Rennes, April 1982)

    Google Scholar 

  10. U. Appel, A. v.Brandt, "A Comparative Study of Three Sequential Time Series Segmentation Algorithms", To appear in Signal Processing 1984

    Google Scholar 

  11. A.S. Willsky and H.L. Jones, "A Generalized Likelihood Ratio Approach to the Detection and Estimation of Jumps in Linear Systems", IEEE Trans. on Automatic Control, vol. AC-21, 1976, pp. 108–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Bensoussan J. L. Lions

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Appel, U., v. Brandt, A. (1984). Performance comparison of two segmentation algorithms using growing reference windows. In: Bensoussan, A., Lions, J.L. (eds) Analysis and Optimization of Systems. Lecture Notes in Control and Information Sciences, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0004952

Download citation

  • DOI: https://doi.org/10.1007/BFb0004952

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13551-7

  • Online ISBN: 978-3-540-39007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics