A general class of estimators for the wigner-ville spectrum of non-stationary processes

  • Patrick Flandrin
  • Wolfgang Martin
Session 1 Non Stationary Processes
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 62)


The Wigner-Ville spectrum is known to be the unique generalized spectrum for the time-varying spectral analysis of harmonizable processes. This time-frequency representation of a process is based on the covariance function and, for quasi-stationary processes, estimators can be defined by means of local time-averaging. We propose here a general class of such estimators relying on an arbitrary weighting function and discuss their first and second order properties in an unifying way. When specifying the arbitrary function, conventional estimators such as short-time periodograms and pseudo-Wigner estimators are recovered and can be compared. This generalized framework emphasizes the versatility of smoothed pseudo-Wigner estimators, especially for uncoupled time and frequency behaviors : they overcome the uncertainty relations of short-time periodograms which only can improve the performances in one direction of the time-frequency plane at the expense of a loss in the other one.


Order Property Ambiguity Function Conventional Estimator Frequency Direction Harmonizable Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    Martin W.: "Time-frequency analysis of random signals", Proc. ICASSP, 1329–1332, Paris, 1982.Google Scholar
  2. 2.
    Flandrin P., Martin W.: "Sur les conditions physiques assurant l'unicité de la représentation de Wigner-Ville comme représentation temps-fréquence", 9ème Colloque GRETSI, Nice, 1983.Google Scholar
  3. 3.
    Martin W., Flandrin P.: "Analysis of non-stationary processes: short-time periodograms versus a pseudo-Wigner estimator", in Schüssler H. (Ed.), EUSIPCO-83, North Holland, Amsterdam, 1983.Google Scholar
  4. 4.
    Escudié B., Gréa J.: "Sur une formulation générale dans l'analyse en temps et fréquence des signaux d'énergie finie", Comptes Rendus, A, 283, 1049–1051, 1976.Google Scholar
  5. 5.
    Claasen T.A.C.M., Mecklenbräuker W.F.G.: "The Wigner distribution — a tool time-frequency signal analysis", Philips J. Res., 35, 217–250, 276–300, 372–389, 1980.Google Scholar
  6. 6.
    Flandrin P., Escudié B.: "Time and frequency representation of finite energy signals: a physical property as a result of an hilbertian condition", Signal Proc., 2, 93–100, 1980.Google Scholar
  7. 7.
    Allen J.B., Rabiner L.R.: "A unified approach to short-time Fourier analysis and synthesis", Proc. IEEE, 65, 1558–1564, 1977.Google Scholar
  8. 8.
    Flandrin P., Martin W.: "Pseudo-Wigner estimators for the analysis of non-stationary processes", Proc. ASSP Spectrum Estimation Workshop II, 181–185, Tampa, 1983.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Patrick Flandrin
    • 1
  • Wolfgang Martin
    • 2
  1. 1.Laboratoire de Traitement du Signal (LA 346 CNRS) ICPILyon Cedex 02France
  2. 2.Botanisches Institut der UniversitätBonnF.R.G.

Personalised recommendations