Skip to main content

Carbon dioxide transfer in biochemical reactors

  • Conference paper
  • First Online:
Biotechnology Methods

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 35))

Abstract

Carbon dioxide is a major product of the oxidation of carbohydrates during cell metabolism. In essence, the oxidation of substrates, such as carbohydrates to CO2 and H2O, is the basis for aerobic forms of life. As such, carbon dioxide is a key component in life processes.

Carbon dioxide is not only a product, but also necessary for the growth of many microorganisms. The depletion of the TCA cycle pool constituents under certain conditions of growth necessitates carbon dioxide fixation to make up the deficiency. Carbon dioxide has also been proven to have a variety of effects on microbial morphology, spore germination, and cell growth and product formation.

A state-of-the-art review of the literature relating to carbon dioxide transfer in submerged biochemical reactors is presented. Emphasis is laid upon absorption and desorption of carbon dioxide in aqueous media. Considerable effort is devoted to discussions of physiological effects of carbon dioxide on microbial activities and carbon dioxide reactions in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

reactor cross section perpendicular to the gas flow (cm2)

a:

interfacial area per unit volume (cm2 cm−3)

C:

constant (dimensionless)

Ca :

concentration of component a (mg L−1)

C *a :

concentration of component a at gas-liquid interface (mg L−1)

Cg :

concentration of a component in gas phase (mg L−1)

Cn :

concentration of organic solute (g L−1)

Cel :

concentration of electrolyte in solution (mol L−1)

C:

concentration of dissolved gas in bulk liquid (g cm−3)

C* :

interfacial dissolved gas concentration in equilibrium with the bulk gas (mol cm−3)

Cg :

bulk gas concentration (mol cm−3)

C *g :

interfacial gas concentration in equilibrium with the liquid concentration (mol cm−3)

ci :

concentration of ionic species i in solution

\(c_{o_2 }\) :

average concentration of dissolved oxygen (mol cm−3)

DAB :

diffusivity of A in B (cm2 s−1)

DA :

diffusivity of solute (cm2 s−1)

DO2 :

oxygen diffusivity in liquid phase (cm2 s−1)

d:

turbine diameter (cm)

Fg :

gas flow rate (cm3 s−1)

H:

Henry's Law Constant

Hi :

parameter (L mol−1)

h:

empirical parameter (L mol−1)

h :

empirical parameter (L mol−1)

h+ :

empirical parameter (L mol−1)

Ii :

ionic strength (mol L−1)

K:

constant (dimensionless)

K:

solubility parameter for non-electrolytes (L g−1)

K:

Sechenov constant

KL :

overall mass transfer coefficient (cm s−1)

kg :

local gas side mass transfer coefficient (cm s−1)

kl :

local liquid side mass transfer coefficient (cm s−1)

MB :

molecular weight of solvent (g mol−1)

m:

parameter (dimensionless)

N:

rotational speed of turbine (revolutions per min)

n:

parameter (dimensionless)

Pg :

gassed power input (g cm s−1)

pa :

partial pressure of component a (KPa)

pai :

partial pressure of component a at the interface (KPa)

Qi :

local uptake rate (mole cm−3 s−1)

¯Q:

average uptake rate (mole cm−3 s−1)

R:

rate of absorption (mole cm−2 s−1)

¯R:

average rate of absorption (mole cm−2 s−1)

R′:

specific CO2 production rate (mol CO2 per mg cell per s)

−r:

transfer rate of CO2 across gas-liquid interface (mol CO2 per cm3 s−1)

s ':

surface renewal rate (s−1)

T:

temperature (K)

V:

reactor volume (cm3)

VA :

molecular volume of solute (cm3 mol−1)

VL :

liquid volume (cm3) or liquid flow rate (cm s−1)

VS :

superficial gas velocity (cm min−1)

VT :

terminal bubble rise velocity (cm min−1)

X′:

viable cell mass (mg cell per cm3)

zi :

valencies of ions (dimensionless)

α:

Bunsen coefficient (dimensionless)

α0 :

Bunsen coefficient of water (dimensionless)

αel :

Bunsen coefficient of salt solution (dimensionless)

θ:

exposure time (s)

δ:

parameter

Μ:

viscosity (g cm−1 s−1)

χ:

association parameter (dimensionless)

ϱ:

density (g cm−3)

σ:

surface tension (dyne cm−1)

ϕ:

age distribution of fluid elements (dimensionless)

References

  1. Quicker, G., Schumpe, A., Konig, B., Deckwer, W.-D.: Biotech. Bioeng. 23, 635 (1981)

    Google Scholar 

  2. Schumpe, A., Quicker, G., Deckwer, W.-D.: Adv. Biochem. Eng. 24, 1 (1982)

    Google Scholar 

  3. Schumpe, A., Adler, I., Deckwer, W.-D.: Biotech. Bioeng. 20, 145 (1978)

    Google Scholar 

  4. Sechenov, M.: Ann. Chim. Phys. 25, 226 (1892)

    Google Scholar 

  5. Danckwerts, P. V.: Gas-Liquid Reactions, McGraw-Hill, N.Y. 1970

    Google Scholar 

  6. Findlay, A., Shen, B.: J. Am. Chem. Soc. 101, 1459 (1912)

    Google Scholar 

  7. Onda, K., Sada, E., Kobayashi, T., Kito, S., Ito, K.: J. Chem. Eng. (Japan) 3, 18 (1970)

    Google Scholar 

  8. Schumpe, A., Deckwer, W.-D.: Biotech. Bioeng. 21, 1075 (1979)

    Google Scholar 

  9. Bird, R. B., Stewart, W. E., Lightfoot, E. N.: Transport Phenomenon, John Wiley, New York 1960

    Google Scholar 

  10. Bennett, C. O., Myers, J. E.: Momentum, Heat, and Mass Transfer (3rd Ed.). McGraw-Hill, New York 1982

    Google Scholar 

  11. Himmelblau, D. M.: AIChE (Modular Instruction), Stagewise and Mass Transfer 4, 16 (1983)

    Google Scholar 

  12. Davies, G. A., Ponter, A. B., Crain, K.: Can. J. Chem. Eng. 45, 372 (1967)

    Google Scholar 

  13. Ratcliff, G. A., Holdcroft, J. G.: Trans. Inst. Chem. Engrs. 41, 315 (1963)

    Google Scholar 

  14. Nijsing, R. A. T. O., Hendriksz, R. H., Kramers, H.: Chem. Eng. Sci. 10, 38 (1959)

    Google Scholar 

  15. Harriott, P.: Can. J. Chem. Eng. 40, 60 (1962)

    Google Scholar 

  16. Smith, M. D.: M.S. Thesis, Department of Chemical Engineering, State University of New York at Buffalo 1984

    Google Scholar 

  17. Tsao, G. T., Lee, Y. H.: Ann. Reports on Fermentation Processes 3, 74 (1979)

    Google Scholar 

  18. Bailey, J. E., Ollis, D. F.: Biochemical Engineering Fundamentals, McGraw-Hill, New York 1977

    Google Scholar 

  19. Rushton, J. H., Costich, E. W., Everett, H. J.: Chem. Eng. Progress 46, 467 (1950)

    Google Scholar 

  20. Calderbank, P. H.: Trans. Inst. Chem. Engrs. 36, 443 (1958)

    Google Scholar 

  21. Knoche, W.: Biophysics and Physiology of Carbon Dioxide, (Bauer, C., Gros, G., Bartels, H. Eds.), p. 3, Springer-Verlag, Berlin, FRG 1980

    Google Scholar 

  22. Ishizaki, A., Shibai, H., Hirose, Y., Shiro, T.: Agr. Biol. Chem. 35, 1733 (1971)

    Google Scholar 

  23. Roughton, F. J. W.: J. Am. Chem. Soc. 63, 2930 (1941)

    Google Scholar 

  24. Shedlovsky, T., MacInnes, D. A.: ibid. 57, 1705 (1935)

    Google Scholar 

  25. MacInnes, D. A., Belcher, D.: ibid. 55, 2630 (1933)

    Google Scholar 

  26. Wissburn, K. F., French, D. M., Patterson, A.: J. Phys. Chem. 58, 693 (1954)

    Google Scholar 

  27. Otto, N. C., Quinn, J. A.: Chem. Eng. Sci. 26, 949 (1971)

    Google Scholar 

  28. Kernohan, J. C.: Biochim. Biophys. Acta 81, 346 (1964)

    Google Scholar 

  29. Kernohan, J. C.: ibid. 96, 304 (1965)

    Google Scholar 

  30. Tsao, G. T.: Chem. Eng. Sci. 27, 1593 (1972)

    Google Scholar 

  31. Alper, E., Deckwer, W.-D.: ibid. 35, 549 (1980)

    Google Scholar 

  32. Alper, E., Lohse, M., Deckwer, W.-D.: ibid. 35, 2147 (1980)

    Google Scholar 

  33. Donaldson, T. L., Quinn, J. A.: ibid. 30, 103 (1975)

    Google Scholar 

  34. Meldon, J. H., Smith, K. A., Colton, C. K.: ibid. 32, 939 (1977)

    Google Scholar 

  35. Lander, R. J., Smith, D. R., Quinn, J. A.: ibid. 34, 747 (1979)

    Google Scholar 

  36. Matson, S. L., Herrick, C. S., Ward III, W. J.: Ind. Eng. Chem. Process Des. Dev. 16, 370 (1977)

    Google Scholar 

  37. Jones, R. P., Greenfield, P. F.: Enzyme Microb Technol. 4, 210 (1982)

    Google Scholar 

  38. Yagi, H., Yoshida, F.: Biotech. Bioeng. 19, 801 (1977)

    Google Scholar 

  39. Ishizaki, A., Hirose, Y., Shiro, T.: Agr. Biol. Chem. 35, 1852 (1971)

    Google Scholar 

  40. Ishizaki, A., Hirose, Y., Shiro, T.: ibid. 35, 1860 (1971)

    Google Scholar 

  41. Nyiri, L., Lengyel, Z. L.: Biotech. Bioeng. 10, 133 (1968)

    Google Scholar 

  42. Aiba, S., Humphrey, A. E., Millis, N. F.: Biochemical Engineering Academic Press, New York 1965

    Google Scholar 

  43. Esener, A. A., Kossen, N. W. F., Roels, J. A.: Biotech. Bioeng. 22, 1979 (1980)

    Google Scholar 

  44. Barford, J. P., Hall, R. J.: ibid. 21, 609 (1979)

    Google Scholar 

  45. Smith, M. D., Ho, C. S.: Chemical Engineering Communications 37, 2 (1985)

    Google Scholar 

  46. Mou, D. G., Cooney, C. L.: Biotech. Bioeng. 25, 225 (1984)

    Google Scholar 

  47. Doyle, M. P.: European J. Appl. Microbiol. Biotechnol. 17, 53 (1983)

    Google Scholar 

  48. Chen, S. L., Gutmanis, F.: Biotech. Bioeng. 18, 1455 (1976)

    Google Scholar 

  49. Hirose, Y., Sonoda, H., Kinoshita, K., Okada, H.: Agr. Biol. Chem. 32, 851 (1968)

    Google Scholar 

  50. Cooney, C. L., Wang, D. I. C., Mateles, R. I.: Biotech. Bioeng. 11, 169 (1968)

    Google Scholar 

  51. Bylinkina, E. S., Nikitima, T. S., Biryukov, V. V., Cherkasov, O. N.: Biotechnol. Bioeng. Symp. 4, 197 (1974)

    Google Scholar 

  52. Pirt, S. J., Mancini, B. J.: J. Appl. Chem. Biotechnol. 25, 781 (1975)

    Google Scholar 

  53. Ho, C. S., Smith, M. D.: Biotech. Bioeng. 28, 668 (1986)

    Google Scholar 

  54. Righelato, R. C., Trinci, A. P. J., Pirt, S. J.: J. Gen. Microbiol. 50, 399 (1968)

    Google Scholar 

  55. Smith, M. D., Ho, C. S.: J. Biotechnology 2, 347 (1985)

    Google Scholar 

  56. Miles, E. A., Trinci, A. P. J.: Trans. Br. Mycol. Soc. 81, 193 (1983)

    Google Scholar 

  57. Pirt, S. J., Callow, D. J.: Nature 184, 307 (1959)

    Google Scholar 

  58. Morton, A. G.: Proc. R. Soc. Lond. B 153, 548 (1961)

    Google Scholar 

  59. Trinci, A. P. J., Righelato, R. G.: J. Gen. Microbiol. 60, 239 (1970)

    Google Scholar 

  60. Collinge, A. J., Miles, E. A., Trinci, A. P. J.: Trans. Br. Mycol. Soc. 70, 401 (1978)

    Google Scholar 

  61. Bent, K. J., Morton, A. G.: ibid. 46, 401 (1963)

    Google Scholar 

  62. Albert, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D.: Molecular Biology of the Cell, Garland Publishing Company, New York 1983

    Google Scholar 

  63. Houslay, M. D., Stanley, K. K.: Dynamics of Biological Membranes, John Wiley and Sons, New York 1982

    Google Scholar 

  64. Stewart, P. R., Rogers, P. J.: “Fungal Dimorphism”, in Fungal Differentiation, (Smith, J. E. Ed.), Marcel Dekker, Inc., New York 1983

    Google Scholar 

  65. Jaffe, L. F.: Phil. Trans. R. Soc. Lond. B. 295, 553 (1981)

    Google Scholar 

  66. Harold, F. M., Kropf, D. L., Caldwell, J. C.: Exp. Mycol. 9, 183 (1985)

    Google Scholar 

  67. Jaffe, L. F., Muccitelli, R.: J. Cell Biol. 63, 614 (1974)

    Google Scholar 

  68. Kropf, D. L., Lupa, M. D. A., Caldwell, J. H., Harold, F. M.: Science 220, 1385 (1983)

    Google Scholar 

  69. Kropf, D. L., Caldwell, J. H., Gow, N. A. R., Harold, F. M.: J. Cell Biol. 99, 486 (1984)

    Google Scholar 

  70. Ho, C. S., Shanahan, J. F.: CRC Critical Reviews in Biotechnol. 4, 185 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Ho, C.S., Smith, M.D., Shanahan, J.F. (1987). Carbon dioxide transfer in biochemical reactors. In: Biotechnology Methods. Advances in Biochemical Engineering/Biotechnology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0004427

Download citation

  • DOI: https://doi.org/10.1007/BFb0004427

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17627-5

  • Online ISBN: 978-3-540-47727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics