Skip to main content

Predictive controller and estimator for nasa deep space network antennas

  • Conference paper
  • First Online:
  • 148 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 170))

Abstract

In this paper a modified state-space predictive controller is introduced, and a predictive estimator presented to complement the design of a predictive control law. This approach has been used for the design of tracking controllers for the NASA/JPL 70-m antennas. Several tracking scenarios have been tested (step input, constant rate rise and fall, raised cosine trajectory), and significant improvement of performance has been observed. A wider bandwidth and improved roll-off rate is obtained for the predictive closed-loop system in comparison with the LQ system. The predictive control system is robust to the plant parameter variations. Shifts of plant poles of 20% of their nominal values has a tracking error of the same order as for a nominal plant. Its disturbance suppression properties have also been simulated and found good for input disturbances and for the measurement noise, if the measurement noise spectrum is higher than the plant fundamental frequency. The system disturbance suppression properties can be enhanced if a disturbance filter is applied. For the predictive estimator, the estimation error and time to reach stationary error are much smaller than for the LQ estimator.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kwakernaak, H., and Sivan, R.: Linear Optimal Control Systems. Wiley, New York, 1972.

    Google Scholar 

  2. Anderson, B.D.O., and Moore, J.B.: Optimal Control, Prentice Hall, Englewood Cliffs, 1990.

    Google Scholar 

  3. Astrom, K.J., and Wittenmark, B.: Adaptive Control, Addison-Wesley, Reading, 1989.

    Google Scholar 

  4. Goodwin, G.C., and Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice-Hall, Englewood Cliffs, 1984.

    Google Scholar 

  5. Lewis, F.L.: Optimal Control, Wiley-Interscience, New York, 1986.

    Google Scholar 

  6. Albertos, P., and Ortega, R.: On Generalized Predictive Control: Two Alternative Formulations. Automatica, vol.25, no.5, 1989, pp.753–755.

    Google Scholar 

  7. Clarke, D.W. and Mohtadi, C.: Properties of Generalized Predictive Control. Automatica, vol.25, no.6, 1989, pp.859–875.

    Google Scholar 

  8. Clarke, D.W., Mohtadi, C., and Tuffs, P.S.: Generalized Predictive Control — Part I and II. Automatica, vol.23, no.2, 1987, pp.137–160

    Google Scholar 

  9. Ortega, R., and Galindo, G.S.: Globally Convergent Multistep Receding Horizon Adaptive Controller. Int. J. Control, vol.49, no.5, 1989, pp.1655–1664.

    Google Scholar 

  10. Reid, J.G., Chaffin, D.E., and Silverthorn, J.T.: Output Predictive Algorithmic Control: Precision Tracking with Application to Terrain Following. J. Guidance, Control, and Dynamics, vol.4, no.5, 1981, pp.502–509.

    Google Scholar 

  11. Xi, Y.: New Design Method for Discrete-Time Multi-Variable Predictive Controllers. Int. J. Control, vol.49, No.1, 1989, pp.45–56.

    Google Scholar 

  12. Maciejowski, J.M.: Multivariable Feedback Design. Addison — Wesley Wokingham, 1989.

    Google Scholar 

  13. Ray, L.R., and Stengel, R.F.: Stochastic Performance Robustness of Aircraft Control Systems. Proc. AIAA Guidance, Navigation and Control Conf., pp.863–873, Portland, OR, 1990.

    Google Scholar 

  14. Alvarez, L.S., and Nickerson, J.: Application of Optimal Control Theory to the Design of the NASA/JPL 70-Meter Antenna Axis Servos. TDA Progress Report, vol.42–97, 1989.

    Google Scholar 

  15. Francis, B.A., and Wonham, W.M.: The Internal Model Principle of Control Theory. Automatica, vol.12, pp.457–465, 1976.

    Google Scholar 

  16. Athans, M.: On the Design of PID Controllers Using Optimal Linear Regulator Theory. Automatica, vol.7, pp.643–647, 1971.

    Google Scholar 

  17. Fukata, S., Mohri, A., and Takata, M.: On the Determination of the Optimal Feedback Gains for Multivariable Linear Systems Incorporating Integral Action. Int. J. Control, vol.31, no.6, pp.1027–1040, 1980.

    Google Scholar 

  18. Johnson, C.D.: Optimal Control of the Linear Regulator with Constant Disturbances, IEEE Trans. Automatic Control, vol.13, pp.416–421, 1968.

    Google Scholar 

  19. Porter, B.: Optimal Control of Multivariable Linear Systems Incorporating Integral Feedback. Electronics Letters, vol.7, no.8, 1971.

    Google Scholar 

  20. Yahagi, T.: Optimal Output Feedback Control in the Presence of Step Disturbances. Int. J. Control, vol.26, no.5, pp.753–762, 1977.

    Google Scholar 

  21. Young, P.C., and Willems, J.C.: An Approach to the Linear Multivariable Servomechanism Problem. Int. J. Control, vol.15, no.5, 1972, pp.961–979.

    Google Scholar 

  22. Gumbel, E.J.: Statistics of Extremes, Columbia University Press, New York, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Janislaw M. Skowronski Henryk Flashner Ramesh S. Guttalu

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Gawronski, W. (1992). Predictive controller and estimator for nasa deep space network antennas. In: Skowronski, J.M., Flashner, H., Guttalu, R.S. (eds) Mechanics and Control. Lecture Notes in Control and Information Sciences, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0004307

Download citation

  • DOI: https://doi.org/10.1007/BFb0004307

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54954-3

  • Online ISBN: 978-3-540-46606-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics